Abstract:
In an embodiment, a method of fabricating a polycrystalline diamond compact is disclosed. The method includes sintering a plurality of diamond particles in the presence of a metal-solvent catalyst to form a polycrystalline diamond body; leaching the polycrystalline diamond body to at least partially remove the metal-solvent catalyst therefrom, thereby forming an at least partially leached polycrystalline diamond body; and subjecting an assembly of the at least partially leached polycrystalline diamond body and a cemented carbide substrate to a high-pressure/high-temperature process at a pressure to infiltrate the at least partially leached polycrystalline diamond body with an infiltrant. The pressure of the high-pressure/high-temperature process is less than that employed in the act of sintering of the plurality of diamond particles.
Abstract:
In an embodiment, a polycrystalline diamond compact includes a substrate and a preformed polycrystalline diamond table bonded to the substrate. The table includes bonded diamond grains defining interstitial regions. The table includes an upper surface, a back surface bonded to the substrate, and at least one lateral surface extending therebetween. The table includes a first region extending inwardly from the upper surface and the lateral surface. The first region exhibits a first interstitial region concentration and includes at least one interstitial constituent disposed therein, which may be present in at least a residual amount and includes at least one metal carbonate and/or at least one metal oxide. The table includes a second bonding region adjacent to the substrate that extends inwardly from the back surface. The second bonding region exhibits a second interstitial region concentration that is greater than the first interstitial region concentration and includes a metallic infiltrant therein.
Abstract:
Embodiments of the invention relate to a polycrystalline diamond compact. In an embodiment, the polycrystalline diamond compact includes a substrate and a polycrystalline diamond table including a first polycrystalline diamond layer bonded to the substrate and at least a second polycrystalline diamond layer. At least an un-leached portion of the polycrystalline diamond table includes a plurality of diamond grains defining a plurality of interstitial regions and a metal-solvent catalyst occupying at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oe or more and a specific magnetic saturation of about 15 G·cm3/g or less. The second polycrystalline diamond layer exhibits a second average diamond grain size that is less than a first average diamond grain size of the first polycrystalline diamond layer and/or the first polycrystalline diamond layer includes a tungsten-containing material therein.
Abstract:
Embodiments of the invention relate to a polycrystalline diamond compact. In an embodiment, the polycrystalline diamond compact includes a substrate and a polycrystalline diamond table including a first polycrystalline diamond layer bonded to the substrate and at least a second polycrystalline diamond layer. At least an un-leached portion of the polycrystalline diamond table includes a plurality of diamond grains defining a plurality of interstitial regions and a metal-solvent catalyst occupying at least a portion of the plurality of interstitial regions. The plurality of diamond grains and the metal-solvent catalyst collectively exhibit a coercivity of about 115 Oe or more and a specific magnetic saturation of about 15 G·cm3/g or less. The second polycrystalline diamond layer exhibits a second average diamond grain size that is less than a first average diamond grain size of the first polycrystalline diamond layer and/or the first polycrystalline diamond layer includes a tungsten-containing material therein.
Abstract:
Embodiments relate to polycrystalline diamond compacts (“PDCs”), methods of fabricating PDCs, and applications for such PDCs. In an embodiment, a method includes providing an at least partially leached polycrystalline diamond (“PCD”) body. A residual amount of acid may remain in and/or on the at least partially leached PCD body. The method further includes removing and/or neutralizing at least some of the residual amount of acid from the at least partially leached PCD body and/or a substrate to which the at least partially leached PCD body is attached.
Abstract:
In an embodiment, a polycrystalline diamond table includes a plurality of bonded diamond grains and a plurality of interstitial regions defined by the plurality of bonded diamond grains. The polycrystalline diamond table may be at least partially leached such that at least a portion of at least one interstitial constituent has been removed from at least a portion of the plurality of interstitial regions by exposure to a leaching agent. The leaching agent may include a mixture having a ratio of weight % hydrofluoric acid to weight % nitric acid of about 1.0 to about 2.4, and water in a concentration of about 50 weight % to about 85 weight %. Various other materials, articles, and methods are also disclosed.
Abstract:
Embodiments of methods are disclosed for characterizing a tested superabrasive element, such as a polycrystalline diamond element. In an embodiment, a method of characterizing the relative strength of a superabrasive element is disclosed. A first superabrasive element and a second superabrasive element are positioned upper surface to upper surface, including an area of overlap between the upper surfaces. A load is applied while the first and second superabrasive elements are overlapped until failure of one or both of the first or second superabrasive elements fail. A relative strength is determined using at least the load during failure as a parameter.
Abstract:
Embodiments of methods are disclosed for characterizing a tested superabrasive element, such as a polycrystalline diamond element. In an embodiment, a method of characterizing the relative strength of a superabrasive element is disclosed. A first superabrasive element and a second superabrasive element are positioned upper surface to upper surface, including an area of overlap between the upper surfaces. A load is applied while the first and second superabrasive elements are overlapped until failure of one or both of the first or second superabrasive elements fail. A relative strength is determined using at least the load during failure as a parameter.
Abstract:
Embodiments disclosed herein relate to cell assemblies for fabricating superhard materials (e.g., used in a high-pressure cubic press) and methods of using the same. The disclosed cell assemblies include a plurality of internal anvils, at least some of which are positioned internally relative to a cell pressure medium of the cell assembly. Such a configuration for the cell assemblies may enable one or more of intensifying cell pressure, reducing processing time, or reducing costs for fabricating such superhard materials.
Abstract:
In an embodiment, a polycrystalline diamond compact includes a substrate and a preformed polycrystalline diamond table bonded to the substrate. The table includes bonded diamond grains defining interstitial regions. The table includes an upper surface, a back surface bonded to the substrate, and at least one lateral surface extending therebetween. The table includes a first region extending inwardly from the upper surface and the lateral surface. The first region exhibits a first interstitial region concentration and includes at least one interstitial constituent disposed therein, which may be present in at least a residual amount and includes at least one metal carbonate and/or at least one metal oxide. The table includes a second bonding region adjacent to the substrate that extends inwardly from the back surface. The second bonding region exhibits a second interstitial region concentration that is greater than the first interstitial region concentration and includes a metallic infiltrant therein.