Abstract:
Embodiments disclosed herein relate to cell assemblies for fabricating superhard materials (e.g., used in a high-pressure cubic press) and methods of using the same. The disclosed cell assemblies include a plurality of internal anvils, at least some of which are positioned internally relative to a cell pressure medium of the cell assembly. Such a configuration for the cell assemblies may enable one or more of intensifying cell pressure, reducing processing time, or reducing costs for fabricating such superhard materials.
Abstract:
Embodiments disclosed herein relate to cell assemblies for fabricating superhard materials (e.g., used in a high-pressure cubic press) and methods of using the same. The disclosed cell assemblies include a plurality of internal anvils, at least some of which are positioned internally relative to a cell pressure medium of the cell assembly. Such a configuration for the cell assemblies may enable one or more of intensifying cell pressure, reducing processing time, or reducing costs for fabricating such superhard materials.
Abstract:
Embodiments disclosed herein relate to cell assemblies for fabricating superhard materials (e.g., used in a high-pressure cubic press) and methods of using the same. The disclosed cell assemblies include a plurality of internal anvils, at least some of which are positioned internally relative to a cell pressure medium of the cell assembly. Such a configuration for the cell assemblies may enable one or more of intensifying cell pressure, reducing processing time, or reducing costs for fabricating such superhard materials.
Abstract:
Embodiments relate to polycrystalline diamond compacts (“PDCs”) that are less susceptible to liquid metal embrittlement damage due to the use of at least one transition layer between a polycrystalline diamond (“PCD”) layer and a substrate. In an embodiment, a PDC includes a PCD layer, a cemented carbide substrate, and at least one transition layer bonded to the substrate and the PCD layer. The at least one transition layer is formulated with a coefficient of thermal expansion (“CTE”) that is less than a CTE of the substrate and greater than a CTE of the PCD layer. At least a portion of the PCD layer includes diamond grains defining interstitial regions and a metal-solvent catalyst occupying at least a portion of the interstitial regions. The diamond grains and the catalyst collectively exhibit a coercivity of about 115 Oersteds or more and a specific magnetic saturation of about 15 Gauss·cm3/grams or less.
Abstract:
Embodiments disclosed herein relate to cell assemblies for fabricating superhard materials (e.g., used in a high-pressure cubic press) and methods of using the same. The disclosed cell assemblies include a plurality of internal anvils, at least some of which are positioned internally relative to a cell pressure medium of the cell assembly. Such a configuration for the cell assemblies may enable one or more of intensifying cell pressure, reducing processing time, or reducing costs for fabricating such superhard materials.
Abstract:
Embodiments relate to polycrystalline diamond compacts (“PDCs”) that are less susceptible to liquid metal embrittlement damage due to the use of at least one transition layer between a polycrystalline diamond (“PCD”) layer and a substrate. In an embodiment, a PDC includes a PCD layer, a cemented carbide substrate, and at least one transition layer bonded to the substrate and the PCD layer. The at least one transition layer is formulated with a coefficient of thermal expansion (“CTE”) that is less than a CTE of the substrate and greater than a CTE of the PCD layer. At least a portion of the PCD layer includes diamond grains defining interstitial regions and a metal-solvent catalyst occupying at least a portion of the interstitial regions. The diamond grains and the catalyst collectively exhibit a coercivity of about 115 Oersteds or more and a specific magnetic saturation of about 15 Gauss·cm3/grams or less.
Abstract:
In an embodiment, a cell assembly for use in a high-pressure cubic press may include at least one can assembly containing a diamond volume. The at least one can assembly may include an end surface in proximity to the diamond volume. The cell assembly may include at least one heating element including a major surface generally opposing and positioned adjacent to the end surface of the at least one can assembly. The at least one heating element may be positioned and configured to heat the diamond volume. The cell assembly may include at least one pressure transmitting medium extending about the at least one can assembly, and a gasket medium that defines a receiving space configured to receive the at least one can assembly, the one or more heating elements, and the at least one pressure transmitting medium.
Abstract:
Embodiments relate to polycrystalline diamond compacts (“PDCs”) that are less susceptible to liquid metal embrittlement damage due to the use of at least one transition layer between a polycrystalline diamond (“PCD”) layer and a substrate. In an embodiment, a PDC includes a PCD layer, a cemented carbide substrate, and at least one transition layer bonded to the substrate and the PCD layer. The at least one transition layer is formulated with a coefficient of thermal expansion (“CTE”) that is less than a CTE of the substrate and greater than a CTE of the PCD layer. At least a portion of the PCD layer includes diamond grains defining interstitial regions and a metal-solvent catalyst occupying at least a portion of the interstitial regions. The diamond grains and the catalyst collectively exhibit a coercivity of about 115 Oersteds or more and a specific magnetic saturation of about 15 Gauss·cm3/grams or less.