Abstract:
Examples perform live migration of VMs from a source host to a destination host. The disclosure changes the storage environment, directly or through a vendor provider, to active/active synchronous and, during migration, migrates only data which is not already stored at the destination host. The source and destination VMs have concurrent access to storage disks during migration. After migration, the destination VM executes, with exclusive access to the storage disks, and the system is returned to the previous storage environment (e.g., active/active asynchronous).
Abstract:
To create a backup of a live (running) virtual machine, a backup agent may take a snapshot of the virtual machine, backup the virtual machine from the snapshot disk, and delete the snapshot. Deleting the snapshot initiates a snapshot consolidation process where delta disks of the virtual machine are collapsed. A virtual disk layer sets up a mirror driver between a current virtual disk and a target virtual disk. Data sectors of the delta disk are copied over to the target virtual disk in a single pass, while the mirror driver mirrors write request for the current virtual disk to the target virtual disk.
Abstract:
When a request is made to retrieve a guest physical page from memory and a page fault occurs, a guest virtual page address that corresponds to the guest physical page is identified along with addresses for guest virtual pages that are near the guest virtual page in the virtual address space. Each identified guest virtual page address is translated into a corresponding guest physical page address and the corresponding guest physical pages are loaded into memory.
Abstract:
Memory pages that are allocated to a memory consumer and continue to be accessed by the memory consumer are included in a free list, so that they may be immediately allocated to another memory consumer as needed during the course of normal operation without preserving the original contents of the memory page. When a memory page in the free list is accessed to perform a read, a generation number associated with the memory page is compared with a stored copy. If the two match, the read is performed on the memory page. If the two do not match, the read is not performed on the memory page.
Abstract:
A method for transferring guest physical memory from a source host to a destination host during live migration of a virtual machine (VM) involves (a) transmitting pages of the guest physical memory from the source host to the destination host over a network connection, (b) transferring state information from the source host to the destination host, (c) while performance benefits regarding continued access to the guest physical memory on the source host persist, using the transferred state information to run the VM on the destination host in place of running the VM on the source host, and (d) while the VM is running on the destination host, writing pages of the guest physical memory from the source host to a shared datastore such that the destination host can retrieve the written guest physical pages from the shared datastore.
Abstract:
A method of managing a network file copy (NFC) operation, includes the steps of: transmitting a request to execute a first NFC operation on at least a first data store, wherein the first NFC operation comprises creating a full copy of a file that is stored in the first data store; after transmitting the request to execute the first NFC operation, determining that the first NFC operation should be stopped; and based on determining that the first NFC operation should be stopped: transmitting a request to stop the first NFC operation, selecting a second data store, and transmitting a request to execute a second NFC operation on at least the second data store, wherein the second NFC operation comprises creating a copy of at least a portion of the file.
Abstract:
Processes for managing computing processes within a plurality of data centers configured to provide a cloud computing environment are described. An exemplary process includes executing a process on a first host of a plurality of hosts. When the process is executing on the first host, a first network identifier associated with the plurality of hosts is not a network identifier of a pool of network identifiers associated with the cloud computing environment and first and second route tables respectively corresponding to first and second data centers of the plurality of data centers associate the first network identifier with the first host. The exemplary process further includes detecting an event associated with the process. In response to detecting the event associated with the process, the first and second route tables are respectively updated to associate the first network identifier with a second host of the plurality of hosts.
Abstract:
Methods and devices for providing reserved failover capacity across a plurality of data centers are described herein. An exemplary method includes determining whether a management process is executing at a first data center corresponding to a first physical location. In accordance with a determination that the management process is not executing at the first data center corresponding to the first physical location a host is initiated at a second data center corresponding to a second physical location and the management process is executed on the initiated host at the second data center corresponding to the second physical location.
Abstract:
The present disclosure describes a technique for honoring virtual machine placement constraints established on a first host implemented on a virtualized computing environment by receiving a request to migrate one or more virtual machines from the first host to a second host and without violating the virtual machine placement constraints, identifying an architecture of the first host, provisioning a second host with an architecture compatible with that of the first host, adding the second host to the cluster of hosts, and migrating the one or more virtual machines from the first host to the second host.
Abstract:
The disclosure provides an approach for eliminating issues associated with the use of an L2 extension and ARP calls after migrating a virtual machine from one host to another host. The approach involves placing nodes within a network within their own subnetworks, each subnetwork having an IP address range of one address. Placing nodes into subnets of one avoids intra-subnet forwarding, eliminating the need for ARP calls and for L2 extensions.