Abstract:
The present invention relates to a method for controlling a wind power plant, comprising one or more wind turbine generator(s) connected to an electrical grid, and a power plant controller having an operational mode, controlling electrical parameters, wherein the method comprises, determining a first voltage level of one or more wind turbine generator(s), determining if the first voltage level of one or more wind turbine generator(s) is outside a first predetermined range, in case the first voltage level of one or more wind turbine generator(s) is outside a first predetermined range then, changing the operational mode of the power plant controller between first and second operational modes, the first operational mode controlling a first electrical parameter, the second operational mode controlling a second electrical parameter, the first and second parameters being different. The present invention also relates to a power plant controller and a wind power plant operated according to the method.
Abstract:
Operating a renewable energy power includes receiving a measurement signal indicative of a measured power characteristic of the plant at a point of connection to a power network; controlling the plant 12) according to a normal mode of operation to provide power by determining and dispatching power set points, the power set points being determined by: acquiring samples of the measurement signal at a sample rate; and determining the power set points based on the sampled measurements and a target level for the measured power characteristic; and monitoring the measurement signal to detect an undersampled oscillation of the measured power characteristic in the sampled measurements, and thereby detecting a control fault; and then controlling the plant according to a fault mode of operation.
Abstract:
The invention relates to a method for controlling power generation of a VSM wind turbine. The wind turbine comprises a machine side converter, a line side converter, a DC link, and an electric storage device electrically connected to the DC link. The method comprises determining a first power control signal to the machine side converter, determining a second power control signal for controlling a desired output power of the line side converter based on a storage device voltage error, and a power production reference, and determining a charging current reference for controlling charging and discharging of the electric storage device based on a DC-link voltage error.
Abstract:
Aspects of the present invention relate to a method for controlling one or more wind turbine generators. The method comprises: monitoring an electrical parameter of a power network to which the wind turbine generators are connected with respect to a deadband for the electrical parameter; and determining that the monitored electrical parameter is deviating outside of the deadband. In response to determining that the electrical parameter is deviating outside of the deadband, the method comprises: quantifying a severity of the deviation; and selectively implementing a parameter control mode when the quantified severity of the deviation is at or above a threshold level. In the parameter control mode, one or more power set points are determined based on the value of the electrical parameter and are dispatched to control the wind turbine generators.
Abstract:
A method and control arrangement are disclosed for controlling power output of a wind power plant (WPP) including a plurality of wind turbine generators (WTGs). The method includes determining that overboosting is required for the WPP to meet a power demand at the WPP, and determining, for at least a first WTG of the plurality of WTGs, a corresponding amount of overboost capacity. The method further includes generating, based on the determined amount of overboost capacity, control signals causing the first WTG to increase its power output through overboosting to thereby fulfill at least a portion of the power demand.
Abstract:
The invention relates to a method for correcting deviations of power produced by a power plant which includes at least one wind turbine generator and possibly other types of power generating units. The power deviations, i.e. deviations from a power reference for the power plant, are determined as energy errors. The invention addresses solutions for determining and compensating the energy errors.
Abstract:
The invention relates to a power plant controller for controlling wind turbine generators. More particularly, the invention relates to a method for compensating data obtained from measurements at a connection point to the grid in case of a communication failure where communication of such data is lost or becomes unreliable. The measured data are used in the power plant controller for determining setpoints for controlling the wind turbine generators' production of active and reactive power. In response to detection of a communication fault a new setpoint is determined independently of new measured grid data by reconfiguring parts of the power plant controller.
Abstract:
The present invention relates to a method for controlling a wind power plant, the wind power plant comprising a plurality of wind turbine generators, each wind turbine generator comprising at least one power converter for providing active power and/or reactive power to an electrical grid, wherein the method is determining a required amount of reactive power provided by the plurality of wind turbine generators, and grouping the plurality of wind turbine generators into a first set of wind turbine generators and a second set of wind turbine generators based on a demand for reactive power; and supplying reactive power to the grid (20) from the first set of wind turbine generators and disconnecting the second set of wind turbine generators from the electrical grid (20) in response to a control demand, in order to minimize active power losses. The present invention also relates to a wind power plant arranged to perform the method.
Abstract:
The invention relates to a wind power plant control system arranged for controlling one or more wind turbine generators in a wind power plant, wherein the wind power plant control system comprises a power plant controller and a modeling unit, the modeling unit being operatively coupled to the power plant controller. The modeling unit is arranged to calculate estimated values of electrical output parameters from the one or more wind turbine generators, and to output said estimated values to the power plant controller. The power plant controller is arranged for determining reference signals for dispatching to the one or more wind turbine generators, wherein the estimated values of said electrical output parameters are used by the power plant controller in the determination of said reference signals. The invention also relates to a corresponding method of controlling a wind power plant.
Abstract:
The present invention relates to a wind power plant, with at least one wind turbine generator, where each of the at least one wind turbine generator has a first voltage controller with a first bandwidth, arranged for controlling a voltage level, and where the wind power plant has a power plant controller with a second voltage controller with a second bandwidth also arranged for controlling the voltage level, the first bandwidth is larger than the second bandwidth. The invention also relates to a method for controlling the voltage level of a wind power plant, by using multi bandwidth voltage controllers.