摘要:
An electrochemical device comprises an electrochemical cell. The electrochemical cell comprises a composite cation-exchange member including a conductive base and a cation-exchange material in physical contact with the conductive base, a composite anion-exchange member including a conductive base and an anion-exchange material in physical contact with the conductive base; and a compartment between the composite cation-exchange and anion-exchange members. The compartment comprises an inlet for introducing a feed stream, and an outlet for exiting of an output stream out of the compartment. The electrochemical device comprises a control device configured to transmit an electrical current to the composite cation-exchange and anion-exchange members at a regeneration stage in a manner that the conductive base on the composite cation-exchange member loses electrons and the conductive base on the composite anion-exchange member gains electrons.
摘要:
The present invention relates to an ionic species removal system comprising one or more electrode stack(s), each electrode stack including two electrodes and cation exchange membranes and anion exchange membranes alternately arranged between the two electrodes, wherein at least one electrode of at least one of the electrode stack(s) is an electrode coated with an ion exchange coating. The ionic species removal system mitigates the scaling risk by employing an electrode coated with an ion exchange coating.
摘要:
A super-capacitor desalination device is described and includes a pair of terminal electrodes and at least one bipolar electrode located between the terminal electrodes. The at least one bipolar electrode has an ion exchange material disposed on opposing surfaces thereof The ion exchange material is a cation exchange material or an anion exchange material. A method for super-capacitor desalination is also provided.
摘要:
An electrochemical desalination system includes a first and a second electrochemical device and a controller. The first and second electrochemical devices each comprises a electrochemical desalination module comprising at least one pair of electrodes and a compartment between each pair of electrodes for receiving an electrolyte solution. Each of the first and second electrochemical desalination devices comprises a plurality of successive operation cycles. Each cycle comprises a charging mode of operation for charging each pair of electrodes and for adsorbing ions in the electrolyte solution on the electrodes, and a discharging mode of operation for discharging the pair of electrodes and for desorbing ions from the pair of electrodes. The controller is configured to control the system that the first and second electrochemical desalination devices have interleaved charging and discharging modes of operation. One of the first and second electrochemical desalination devices is in a discharging mode and the at least one pair of electrodes release electrical current, while the other of the first and second electrochemical desalination devices is in a charging mode of operation and receives the electrical current released from said one of the first and second electrochemical desalination device.
摘要:
An electrochemical desalination system includes a first and a second electrochemical device and a controller. The first and second electrochemical devices each comprises a electrochemical desalination module comprising at least one pair of electrodes and a compartment between each pair of electrodes for receiving an electrolyte solution. Each of the first and second electrochemical desalination devices comprises a plurality of successive operation cycles. Each cycle comprises a charging mode of operation for charging each pair of electrodes and for adsorbing ions in the electrolyte solution on the electrodes, and a discharging mode of operation for discharging the pair of electrodes and for desorbing ions from the pair of electrodes. The controller is configured to control the system that the first and second electrochemical desalination devices have interleaved charging and discharging modes of operation. One of the first and second electrochemical desalination devices is in a discharging mode and the at least one pair of electrodes release electrical current, while the other of the first and second electrochemical desalination devices is in a charging mode of operation and receives the electrical current released from said one of the first and second electrochemical desalination device.
摘要:
Methods for preparing an electrode comprise: providing a mixture of carbon particles and a solvent and shearing the mixture to form a dispersion of the carbon particles in the solvent; adding non-fibrillated POLY(TETRAFLUOROETHYLENE) to the dispersion to provide a resultant mixture and shearing the resultant mixture until at least a portion of the poly(tetrafluoroethylene) has been fibrillated; processing the resultant mixture into a sheet; and attaching the sheet onto a current collector. Methods for preparing sheet for the electrode and composition for the sheet are also provided.
摘要:
A super-capacitor desalination device is described and includes a pair of terminal electrodes and at least one bipolar electrode located between the terminal electrodes. The at least one bipolar electrode has an ion exchange material disposed on opposing surfaces thereof The ion exchange material is a cation exchange material or an anion exchange material. A method for super-capacitor desalination is also provided.
摘要:
A method for cross-linking a styrenic polymer, the method comprising providing a partly sulphonated styrenic polymer and cross-linking the partly sulphonated styrenic polymer in the presence of a polyphosphoric acid.
摘要:
The embodiments of the present invention relate to a membrane assembly for use in a galvanic cell, the membrane assembly comprising an anionic layer in contact with an electrolyte base, a cationic layer in contact with an electrolyte acid and an intermediate layer separating the anionic layer and cationic layer.
摘要:
A fuel cell assembly may be provided that includes a first cathodic electrode and a second cathodic electrode; an anodic electrode positioned between the first cathodic electrode and the second cathodic electrode; a first membrane positioned between the first cathodic electrode and the anodic electrode; a second membrane positioned between the second cathodic electrode and the anodic electrode; and a seal ring for sealing the fuel cell assembly, the seal ring comprising a water-refilling mechanism.