Abstract:
An optical interference display cell is described. A first electrode and a sacrificial layer are sequentially formed on a transparent substrate and at least two openings are formed in the first electrode and the sacrificial layer to define a position of the optical interference display cell. An insulated heat-resistant inorganic supporter is formed in each of the openings. A second electrode is formed on the sacrificial layer and the supporters. Finally, a remote plasma etching process is used for removing the sacrificial layer.
Abstract:
The method for fabricating reflector plate for a reflective liquid crystal display and the device is disclosed. The present invention includes the formation of a protection layer over the glass substrate having thin film transistors and a layer of transparent electrodes on top, followed by the formation of a layer of undulating resin over the protection layer. If the reflector plate to be produced is a semi-transmissive type, a light-transmitting region is created over the protection layer. Since the protection layer is created in advance of the undulating resin outgrowth, the present method can effectively prevent reflection from the exposure stage during the lithography process, thus the problem of abnormal pattern marks occurring on the reflective surface can be avoided, and the exposure time and the production yield are enhanced.
Abstract:
An optical interference display panel is disclosed that has a substrate, an optical interference reflection structure, and a protection structure. The optical interference reflection structure has many color-changeable pixels and is formed on the substrate. The protection structure is adhered to the substrate with an adhesive and encloses the optical interference reflection structure between the substrate and the protection structure. The adhesive is used to hermetically isolate the optical interference reflection structure from water, dust and oxygen in the air. Moreover, the protection structure prevents the interference reflection structure from being damaged by an external force.
Abstract:
An optical interference reflective element has a light-incident electrode and a light-reflective electrode, and each or both of the two electrodes are made of a display part and a wiring part which are electrically connected to each other with a connection part. A plurality of the interference reflective elements are connected to form an electrode line by the wiring parts, and the electrode line is used in an optical interference reflective structure formed by the optical interference reflective elements that is operated in a passive matrix mode.
Abstract:
An optical interference display plate has a substrate, a protection structure, a plurality of color-changeable pixels and a plurality of supports. The color-changeable pixels are located on the substrate. The protection structure encloses the color-changeable pixels such that a gap is maintained between it and the substrate. The supports are located between the color-changeable pixels and the protection structure, and ends thereof are higher than the color-changeable pixels for preventing the color-changeable pixels from being damaged by a deformation of the protection structure.
Abstract:
An interference display unit with a first electrode, a second electrode and posts located between the two electrodes is provided. The characteristic of the interference display unit is that the second electrode's stress is released through a thermal process. The position of the second electrode is shifted and the distance between the first electrode and the second electrode is therefore defined. A method for fabricating the structure described as follow. A first electrode and a sacrificial layer are sequentially formed on a substrate and at least two openings are formed in the first electrode and the sacrificial layer. A supporter is formed in the opening and the supporter may have at least one arm on the top portion of the supporter. A second electrode is formed on the sacrificial layer and the supporter and a thermal process is performed. Finally, The sacrificial layer is removed.
Abstract:
A structure of an interference display cell is provided. The cell comprises a first plate and a second plate, wherein a support is located between the first plate and the second plate. The second plate is a deformable and reflective plate. An incident light from one side of the first plate is modulated and only specific frequency light reflects by the second plate. The frequency of the reflected light is related to the distance between the first plate and the second plate. The support has at least one arm. The arm's stress makes the arm hiking upward or downward. The distance between the first plate and the second plate is also changed. Therefore, the frequency of the reflected light is altered.
Abstract:
A structure of a structure release and a manufacturing method are provided. The structure and manufacturing method are adapted for an interference display cell. The structure of the interference display cell includes a first electrode, a second electrode and at least one supporter. The second electrode has at least one hole and is arranged about parallel with the first electrode. The supporter is located between the first electrode and the second electrode and a cavity is formed. In the release etch process of manufacturing the structure, an etchant can pass through the hole to etch a sacrificial layer between the first and the second electrodes to form the cavity; therefore, the time needed for the process becomes shorter.
Abstract:
A method for fabricating an optical interference display cell is described. A first electrode and a sacrificial layer are sequentially formed on a transparent substrate and at least two openings are formed in the first electrode and the sacrificial layer to define a position of the optical interference display cell. An insulated heat-resistant inorganic supporter is formed in each of the openings. A second electrode is formed on the sacrificial layer and the supporters. Finally, a remote plasma etching process is used for removing the sacrificial layer.
Abstract:
A reflector structure in a multi-domain liquid crystal display comprises an active matrix device structure having regions of various height levels, a diffusing layer, and a structure of multi-domain reflective layer. The diffusing layer is formed above the active matrix device structure with multiple extruded bumps of various film thickness and various heights and shapes. The reflector structure has various reflective angles and reflective effects to improve the quality of LCD panel. It can be used in the reflective layer of a reflective or semi-reflective TN, STN, TFT, or TFD. The reflector fabrication process uses conventional process for a metal or an insulation layer on a TFT substrate to form multiple domains within a pixel area. After forming the cell structure of the multi-domain reflective layer, liquid crystal cells form multiple domains within a pixel area.