Abstract:
A phase change memory device includes a memory cell having a phase change material, a write driver adapted to supply a program current to the memory cell during a programming interval, and a pump circuit adapted to enhance a current supply capacity of the write driver during the programming interval. The pump circuit is activated prior to the programming interval in response to an external control signal.
Abstract:
A method of testing PRAM devices is disclosed. The method simultaneously writes input data to a plurality of memory banks by writing set data to a first group of memory banks and writing reset data to a second group of memory banks, performs a write operation test by comparing data read from the plurality of memory banks with corresponding input data, and determines a fail cell in relation to the test results.
Abstract:
A method of testing PRAM devices is disclosed. The method simultaneously writes input data to a plurality of memory banks by writing set data to a first group of memory banks and writing reset data to a second group of memory banks, performs a write operation test by comparing data read from the plurality of memory banks with corresponding input data, and determines a fail cell in relation to the test results.
Abstract:
According to an example embodiment, a CAM cell included in a CAM may include a phase change memory device, a connector, and/or a developer. The phase change memory device may be configured to store data. The phase change memory device may have a resistance that may be varied according to the logic level of the stored data. The connector may be configured to control writing data to the phase change memory device and reading data from the phase change memory device. The developer may be configured to control reading data from the phase change memory device in a search mode in which the data stored in the phase change memory device is compared to the search data.
Abstract:
A header for filtering membrane module and a filtering membrane module using the same is disclosed, which is capable of maximizing efficiency in power consumption by securing a constant flow of permeate through the use of a relatively-low negative pressure, the header for filtering membrane module comprising a body with a permeate collecting space therein; and a conduit at one end of the body, the conduit being in fluid communication with the permeate collecting space, wherein at least a portion of the permeate collecting space has an inclined shape.