Abstract:
A header for filtering membrane module and a filtering membrane module using the same is disclosed, which is capable of maximizing efficiency in power consumption by securing a constant flow of permeate through the use of a relatively-low negative pressure, the header for filtering membrane module comprising a body with a permeate collecting space therein; and a conduit at one end of the body, the conduit being in fluid communication with the permeate collecting space, wherein at least a portion of the permeate collecting space has an inclined shape.
Abstract:
Provided are a nonvolatile memory and related method of programming same. The nonvolatile memory includes a memory cell array with a plurality of nonvolatile memory cells and a write circuit. The write circuit is configured to write first logic state data to a first group of memory cells during a first program operation using an internally generated step-up voltage, and second logic state data to a second group of memory cells during a second program operation using an externally supplied step-up voltage.
Abstract:
An apparatus and operating method of a nonvolatile memory device having three-level nonvolatile memory cells is used to store more than one bit of data in a nonvolatile memory cell. In addition, the data can be selectively written through a write-verify operation, thereby improving write operation reliability. The operating method includes providing a memory cell array having first through third nonvolatile memory cells where each memory cell is capable of storing one among first data through third data corresponding to first through third resistance levels, respectively. Each of the resistance levels is different from one another. First and the third data are written to the first and third nonvolatile memory cells, respectively, during a first interval of a write operation. Second data is written to the second nonvolatile memory cell during a second interval of the write operation.
Abstract:
A method of testing PRAM devices is disclosed. The method simultaneously writes input data to a plurality of memory banks by writing set data to a first group of memory banks and writing reset data to a second group of memory banks, performs a write operation test by comparing data read from the plurality of memory banks with corresponding input data, and determines a fail cell in relation to the test results.
Abstract:
A method of testing PRAM devices is disclosed. The method simultaneously writes input data to a plurality of memory banks by writing set data to a first group of memory banks and writing reset data to a second group of memory banks, performs a write operation test by comparing data read from the plurality of memory banks with corresponding input data, and determines a fail cell in relation to the test results.
Abstract:
Disclosed is a semiconductor memory device including a memory cell array having a plurality of variable resistance memory cells divided into first and second areas. An I/O circuit is configured to access the memory cell array under the control of control logic so as to access the first or second area in response to an external command. The I/O circuit accesses the first area using a memory cell unit and the second area using a page unit.
Abstract translation:公开了一种半导体存储器件,包括具有分成第一和第二区域的多个可变电阻存储器单元的存储单元阵列。 I / O电路被配置为在控制逻辑的控制下访问存储单元阵列,以响应于外部命令访问第一或第二区域。 I / O电路使用存储单元单元访问第一区域,并且使用页面单元访问第二区域。
Abstract:
Disclosed is a method of driving a multi-level variable resistive memory device. A method of driving a multi-level variable resistive memory device includes supplying a write current to a variable resistive memory cell so as to change resistance of the variable resistive memory cell, verifying whether or not changed resistance enters a predetermined resistance window, the intended resistance window depending on the resistance of reference cells, and supplying a write current having an increased or decreased amount from the write current supplied most recently on the basis of the verification result so as to change resistance of the variable resistive memory cell.
Abstract:
According to an example embodiment, a CAM cell included in a CAM may include a phase change memory device, a connector, and/or a developer. The phase change memory device may be configured to store data. The phase change memory device may have a resistance that may be varied according to the logic level of the stored data. The connector may be configured to control writing data to the phase change memory device and reading data from the phase change memory device. The developer may be configured to control reading data from the phase change memory device in a search mode in which the data stored in the phase change memory device is compared to the search data.
Abstract:
A method of writing data in a phase change memory includes; receiving write data to be written to a selected phase change memory cell in the plurality of phase change memory cells, sensing data stored in the selected phase change memory cell, determining whether or not the sensed data is equal to the write data, and if the sensed data is not equal to the write data, iteratively applying a write current to the selected phase change memory cell, wherein a resistance state of the phase change memory cell is changed by heat corresponding to a level of the write current, and the level of the write current is changed between successive iterative applications.
Abstract:
A phase change memory device performs a program operation by receiving program data to be programmed in selected memory cells, sensing read data already stored in the selected memory cells by detecting respective magnitudes of verify currents flowing through the selected memory cells when a verify read voltage is applied to the selected memory cells, determining whether the read data is identical to the program data, and upon determining that the program data for one or more of the selected memory cells is not identical to the corresponding read data, programming the one or more selected memory cells with the program data.