Abstract:
A system, apparatus, method, and article to process a flexible macroblock ordering and arbitrary slice ordering are described. The apparatus may include a video decoder. The video decoder includes a processor to store coding parameters of one or more neighboring macroblocks in a data buffer. The neighboring macroblocks are previously decoded macroblocks and are adjacent to a current macroblock. The processor is to store control parameters for each of the one or more neighboring macroblocks in the data buffer. The processor is to reconstruct coding parameters for the current macroblock using availability information associated with the neighboring macroblocks.
Abstract:
According to one embodiment, a method is disclosed. The method includes receiving video data performing pre-filtering on the data, performing content analysis is applied to identify an area of the data, applying a two-dimensional (2-D) 2nd gradient operation to extract a high frequency component and normalizing the high frequency component related to high frequency information from a previous picture.
Abstract:
Methods and systems to apply motion estimation (ME) based on reconstructed reference pictures in a B frame or in a P frame at a video decoder. For a P frame, projective ME may be performed to obtain a motion vector (MV) for a current input block. In a B frame, both projective ME and mirror ME may be performed to obtain an MV for the current input block. The ME process can be performed on sub-partitions of the input block, which may reduce the prediction error without increasing the amount of MV information in the bitstream. Decoder-side ME can be applied for the prediction of existing inter frame coding modes, and traditional ME or the decoder-side ME can be adaptively selected to predict a coding mode based on a rate distribution optimization (RDO) criterion.
Abstract:
Techniques are described that can be used to apply motion estimation (ME) based on reconstructed reference pictures in a B frame or in a P frame at a video decoder. For a P frame, projective ME may be performed to obtain a motion vector (MV) for a current input block. In a B frame, both projective ME and mirror ME may be performed to obtain an MV for the current input block. A metric an be used determining a metric for each pair of MV0 and MV1 that is found in the search path, where the metric is based on a combination of a first, second, and third metrics. The first metric is based on temporal frame correlation, a second metric is based on spatial neighbors of the reference blocks, and a third metric is based on the spatial neighbors of the current block.
Abstract:
Techniques are described that can be used to determine parameters of an adaptive Wiener filter to apply to a video region. The following parameters of the Wiener filter may be adjusted: coefficients, coefficient quantization, filter type, filter size, prediction mode, entropy encoding, and number of filter tables. The parameters associated with the lowest rate distortion cost of the encoder are selected for transmission with the encoded video. If not using adaptive Wiener filtering results in a lowest rate distortion cost, then adaptive Wiener filtering is not used for the video region. If using adaptive Wiener filtering results in a lowest rate distortion cost, then the parameters applied by the adaptive Wiener filtering that result in the lowest rate distortion cost are communicated with the filtered video region.
Abstract:
According to one embodiment, a method is disclosed. The method includes receiving video data, measuring a temporal feature of motion movement of the data, measuring per-pixel spatial content features of the data, performing a local content analysis to classify pixels; and performing noise reduction filtering on the pixels.
Abstract:
A system, apparatus, method, and article to process a flexible macroblock ordering and arbitrary slice ordering are described. The apparatus may include a video decoder. The video decoder includes a processor to store coding parameters of one or more neighboring macroblocks in a data buffer. The neighboring macroblocks are previously decoded macroblocks and are adjacent to a current macroblock. The processor is to store control parameters for each of the one or more neighboring macroblocks in the data buffer. The processor is to reconstruct coding parameters for the current macroblock using availability information associated with the neighboring macroblocks.
Abstract:
A system, apparatus, method, and article to process a chroma motion vector are described. The apparatus may include a video decoder. The video decoder includes a processor to receive a compressed video bitstream. The compressed video bitstream includes a stream of pictures. The stream of pictures includes a current slice and a current block within the slice. The processor pre-computes a chroma motion vector adjustment parameter for the current slice and determines a motion vector component for the current block within the current slice using the pre-computed chroma motion vector adjustment parameter. Other embodiments are described and claimed.
Abstract:
An embodiment improves the operation of a H.264 and Joint Scalable Video Codec (e.g., JSVC/H.264 Amendment 3) video decoder by managing neighboring block data during the decoding process. An embodiment pre-computes neighboring block tables to efficiently locate the neighboring block data required to decode a current macroblock. In particular, the pre-computed most probable joint neighboring block tables disclosed herein handle both macroblock adaptive frame field (MBAFF) coding and non-MBAFF coding. An embodiment is further capable of managing variable block sizes. Other embodiments are described and claimed.
Abstract:
A system, apparatus, method and article to filter media signals are described. The apparatus may include a media processor. The media processor may include an image signal processor having multiple processing elements to determine a level of noise for an image using an internal spatial region of said image, select filter parameters based on the level of noise, and filter the image using the filter parameters. Other embodiments are described and claimed.