摘要:
Sharp tools have different cutting characteristics from dull or worn tools. Among these differences is that a wear land develops on the cutting tool so that more of the cutting tool comes into contact with the workpiece during the cutting process. The increased contact area between the tool and workpiece forces more energy to be consumed by the cutting machine in making a cut because more energy is expended in non-productive work. Indications of an increase in non-productive work are the increased power or force necessary to operate a spindle in lathes, milling machines, etc., and the increased energy in cutting vibrations in a low frequency range emitted during the cutting process. Another indication of decreased efficiency of the cutting process is the decreased energy in cutting vibrations in a high frequency range emitted during the cutting process. A method and apparatus are described for continuously monitoring a ratio of spindle force or power or low frequency vibration energy to high frequency vibration energy during the cutting process, and generating an output warning signal when the radio reaches a preselected level correlated with excessive tool wear.
摘要:
A Machine Tool Monitor detects significant cutting tool breakage and the first contact of an advancing tool to a workpiece, and does this by monitoring vibration signals produced by the machining of parts and interpreting patterns in these signals. Information from the part program improves the performance of the detector and optimizes it for the cutting conditions called for by the machine tool control. The analog channel gain of the monitor is adjusted and parameters controlling the digital pattern recognition logic are selected using part program information on machining parameters. The tool touch or tool break detection mode is selected by the part program.
摘要:
Substantial cutting condition changes that occur gradually, as opposed to the more usual sudden large change, are detected by setting upper and lower cutting noise mean level thresholds. When the mean cutting noise exceeds the upper threshold or stays below the lower threshold for a preset number of signal samples, a tool break alarm is generated. Techniques are given to reduce false alarms at the start and end of the cut and on runout on initial rough surface cuts. The system comprises an accelerometer or other sensor whose signal is preprocessed to attenuate lower frequency machinery noise and detect the signal energy in a band below 100 KHz, then sampled, and the digitized signal samples analyzed by pattern recognition logic.
摘要:
This tool break detection system relies on monitoring changes in the cutting noise itself, rather than detecting the tool fracture acoustic signal. A broken tool capable of damaging the workpiece is detected, and tool break events that do not affect cutting conditions are ignored. The signal from a sensor such as an accelerometer is preprocessed to attenuate low frequency machinery noise and detect the signal energy in a band below 100 KHz, then sampled, and the digitized signal samples analyzed by pattern recognition logic. Runout false alarms during rough surface cutting are prevented; after detection of an abrupt increase or decrease in signal level, the confirmation period to test for a persistent shift in mean level is set longer than the workpiece revolution period.
摘要:
A system and method for monitoring vibrations of a cutting tool produced by tool break events, and for interpreting them to detect tool breaks of sufficient magnitude to endanger the machined part. The signal generated by a sensor such as an accelerometer is preprocessed to attenuate low frequency machining noise and detect the energy in a higher frequency band, then sampled, and the digitized signal samples analyzed by tool break detection logic. This logic is triggered by a positive-going signal transient, and prevents false alarms on minor tool break events that do not mar the workpiece and on noise from other sources.
摘要:
A system and method for monitoring vibrations of a machine tool metal-cutting tool insert and interpreting them to promptly detect the initial touch to the workpiece and signal the tool to stop advancing before marring the surface. The signal generated by a sensor such as an accelerometer is preprocessed to eliminate lower frequency machine noise and detect the energy in a higher frequency band, then sampled and analyzed by digital circuitry. In order to avoid false alarms on high amplitude spiky noise pulses generated by traverse operation of the machine tool, the tool touch alarm is delayed longer than the maximum duration of the noise pulses. Two techniques are given to ignore the noise spikes while still detecting the tool touch signal.
摘要:
A self-lubricating cemented carbide cutting tool of special utility in titanium machining having a copper coating bearing a film of copper iodide is provided by coating the tool with a layer of copper, heating to bond the copper to the cemented carbide and thereafter reacting the copper with iodine to form the film of desired thickness.
摘要:
A mass of cubic boron nitride(CBN) crystals, aluminum or aluminum alloy and a silicon carbide ceramic substrate are disposed in a container which is placed within a pressure-transmitting powder medium. Pressure ranging from about 20,000 psi to about 200,000 psi is applied to the powder medium resulting in substantially isostatic pressure being applied to the container and its contents. To the resulting shaped substantially-isostatic system of powder-enveloped container, heat and pressure are applied simultaneously whereby the aluminum or aluminum alloy is liquefied and infiltrated through the interstices between the CBN crystals and diffused into the contacting face of the silicon carbide substrate sufficiently to produce, upon cooling, an adherently bonded integral composite.
摘要:
A high voltage, current limiting device is connected in series with a high voltage power source and a protected load to interrupt current for an over-current condition [Typically 50 kA]. The current limiting device includes a current sensor/isolator and a switch connected in series. A current limiter, which may include a fuse or polymer current limiting material, is connected in parallel to the current sensor/isolator. The current sensor/isolator includes a pair of electrically insulated supports secured to a plurality of support rods to maintain the insulated supports at a predetermined fixed spacing to support an expulsion fuse. The expulsion fuse link includes a pair of copper conductors of adequate current carrying capability that are attached to ends of a main weak link fuse. A pair of coil springs hold the weak link fuse under tension to repel the conductors apart when the weak link fuse melts open during an over-current condition. An electrically insulating flapper pivotally connected at one end of a support rod provides a barrier between the source side and the load side of the current sensor/isolator when the main weak fuse melts open. One embodiment of the current limiter may include a high voltage polymer current limiting (PCL) device having a conductor-filled polymer composite material disposed between a pair of electrodes. The electrodes are forced inwardly by a pair of opposing springs to compress the composite material. The composite material, electrodes and springs are surrounded by pure silica, e.g., sand, within an enclosure.
摘要:
An exemplary current limiting device comprises first and second electrodes; a composite material between the first and second electrodes, the composite material comprising: (a) a binder, and (b) an electrically conductive filler; a thin layer which provides an inhomogeneous distribution of resistance to the device; a web which reinforces the composite material; and a pressurizer for pressing the electrodes against the composite material; wherein the web is disposed in a volume of the composite material which does not include the thin layer. The current limiting device is simple and reusable, and can be tailored to a plurality of applications, including high voltage/current distribution systems, to protect sensitive components from high fault currents. The device has a robust structure which allows it to repeatedly withstand the high mechanical and thermal stresses which typically accompany switching events in high voltage/current circuits. The robust structure improves the lifetime of the device and provides impact resistance to the device. The device operates without relying on the PTCR effect to limit current.