摘要:
The present invention provides a liquid crystal display device using a thin-film transistor, and the invention also provides a method for manufacturing the liquid crystal display device. In openings of a first light transmission type photosensitive resin formed on an insulating substrate, a gate electrode, a source line, and a pixel contact layer are prepared. On these components, a gate insulator, a semiconductor layer, an ohmic contact layer (n+ semiconductor layer) and a protective film are prepared. Further, in openings of a second light transmission type photosensitive resin, a source electrode, a drain electrode, and a pixel electrode are prepared. Also, the crossing portion connecting line formed at the opening of the second light transmission type photosensitive resin is, similarly to the source line or the gate line, made of baked silver produced by baking an ink containing silver fine particles plotted by ink jet process.
摘要:
The present invention provides a technique, by which it is possible to obtain a liquid crystal display panel with high precision by forming very fine pattern of electroconductive film through linking of the areas with different widths, and it is also possible to reduce the number of processes. Like a wide-width electroconductive film and a narrow-width electroconductive film, most of the surface of an underlying film UW of a thin-film transistor substrate SUB1 is turned to lyophobic portion RA, and only the narrow-width gate electrode forming area is turned to lyophilic portion FA. An electroconductive ink is dropped evenly to the gate electrode forming area of the lyophilic portion FA, and a wide-width gate line is formed on the gate line forming area GLA of lyophobic portion RA by direct drawing of IJ. The film thickness of the ink films on the gate electrode forming area GTA and the gate line forming area GLA are controlled by adjusting a dropping amount of the ink on each area, and film thicknesses of these areas obtained on the liquid crystal display panel after baking are adjusted to be equal with each other.
摘要:
A method of manufacturing an active matrix substrate includes forming wiring lines each having a matrix pattern on a substrate such that a wiring line extending in any one of a first direction and a second direction is separated from another wiring line at an intersection; forming a laminated portion composed of an insulating layer and a semiconductor layer on a portion of the wiring line and the intersection; and forming a conductive layer electrically connecting the separated wiring line, and a pixel electrode electrically connected to the wiring line via the semiconductor layer on the laminated portion.
摘要:
A method for preparing a graphite intercalation compound having a metal or a metal compound inserted between adjacent graphite layers, comprising simultaneously introducing a mixture of a vapor of both a hydrocarbon compound and an organo metallic compound together with a carrier gas into a reactor, and decomposing said hydrocarbon compound and said organo metallic compound on a single-crystalline substrate at a relatively low temperature.
摘要:
A carbon electrode including a first carbon layer containing an iron family element formed by vapor pyrolytic deposition of a hydrocarbon compound and a second carbon layer free from any iron family element formed over the surface of said first carbon layer, which is useful in a secondary lithium battery and makes its capacity greater and self-discharge ratio lower.
摘要:
An electrode comprising a graphite composition as an active material is disclosed wherein the graphite composition is composed of high-crystalline graphite having interlayer spacings in the range of 0.3354 to 0.3400 nm and low-crystalline graphite having interlayer spacings in the range of 0.343 to 0.355 nm.
摘要:
The present invention provides a liquid crystal display device to be operated at high speed and with high precision by improving performance of a thin-film transistor without increasing cross capacity of gate lines and data lines. On an upper layer of a gate insulator GI at an intersection of gate lines GL and data lines DL to be prepared on an active matrix substrate SUB1, which makes up a liquid crystal display panel of a liquid crystal display device, an insulating material with low dielectric constant is dropped by ink jet coating method to prepare another insulator LDP in order to improve performance characteristics of the thin-film transistor to be prepared on a silicon semiconductor layer SI without increasing cross capacity on said intersection.
摘要:
The present invention provides a liquid crystal display device to be operated at high speed and with high precision by improving performance of a thin-film transistor without increasing cross capacity of gate lines and data lines. On an upper layer of a gate insulator GI at an intersection of gate lines GL and data lines DL to be prepared on an active matrix substrate SUB1, which makes up a liquid crystal display panel of a liquid crystal display device, an insulating material with low dielectric constant is dropped by ink jet coating method to prepare another insulator LDP in order to improve performance characteristics of the thin-film transistor to be prepared on a silicon semiconductor layer SI without increasing cross capacity on said intersection.
摘要:
The present invention provides a technique, by which it is possible to obtain a liquid crystal display panel with high precision by forming very fine pattern of electroconductive film through linking of the areas with different widths, and it is also possible to reduce the number of processes. Like a wide-width electroconductive film and a narrow-width electroconductive film, most of the surface of an underlying film UW of a thin-film transistor substrate SUB1 is turned to lyophobic portion RA, and only the narrow-width gate electrode forming area is turned to lyophilic portion FA. An electroconductive ink is dropped evenly to the gate electrode forming area of the lyophilic portion FA, and a wide-width gate line is formed on the gate line forming area GLA of lyophobic portion RA by direct drawing of IJ. The film thickness of the ink films on the gate electrode forming area GTA and the gate line forming area GLA are controlled by adjusting a dropping amount of the ink on each area, and film thicknesses of these areas obtained on the liquid crystal display panel after baking are adjusted to be equal with each other.
摘要:
The present invention discloses a method for manufacturing a liquid crystal display panel and said liquid crystal display panel by simplifying the manufacturing process and by manufacturing the liquid crystal display panel at lower cost. The ink jet direct drawing method is introduced in the process or in several processes to manufacture a source electrode SD1 and a drain electrode SD2 including gate lines, gate electrodes and data lines of the liquid crystal display panel, and ink jet direct drawing process is used for the formation of an active layer island, which has a laminated layer comprising a silicon semiconductor layer SI and an n+ contact layer NS.