Abstract:
The present document discloses a method and a system for determining a delay difference, and a base station and UE, the method includes: a serving cell receiving information of time measured by a neighboring cell at which uplink channel/signal information of UE for determining a synchronization delay is received; and the serving cell determining a synchronization delay difference between the UE to the serving cell and the UE to the neighboring cell according to information of time measured by the serving cell at which the uplink channel/signal information of the UE for determining the synchronization delay is received, and the information of time measured by the neighboring cell and at which the uplink channel/signal information of the UE for determining the synchronization delay is received, wherein the uplink channel/signal information measured by the serving cell is the same as the uplink channel/signal information measured by the neighboring cell.
Abstract:
A method and base station for coordinated multi point data transmission are disclosed. The method includes: a base station receiving a per-cell CQI value reported by a UE; looking up an SINR-CQI mapping table according to the per-cell CQI value, and acquiring a subband/broadband SINR value; performing CQI recalculation according to the subband/broadband SINR value, and acquiring a recalculated subband/broadband CQI value; and selecting modulation and coding according to the recalculated subband/broadband CQI value to schedule data transmission. With the method and base station of the embodiments of the present document, in a CoMP system, in a joint transmission scenario, the accuracy of the CQI value used by the BS for scheduling is improved, and the oscillation during an AMC process is reduced.
Abstract:
The present invention relates to the field of wireless communications. Disclosed are a state switching method and device for a small cell base station and a computer storage medium. The method comprises: acquiring state switching information comprising a state switching mode and performing state switching on the small cell base station according to the state switching information.
Abstract:
A method for guaranteeing channel phase continuity of pre-coded RB groups, a base station and a computer-readable storage medium are described. The method includes that: a base station implements a channel estimation through a Sounding Reference Signal (SRS) measurement to obtain an uplink channel and obtains a corresponding downlink channel based on reciprocity of uplink and downlink channels; the base station calculates a weight phase correction factor based on the obtained downlink channel and corrects a pre-coding weight with the weight phase correction factor; and the base station pre-codes data according to the corrected pre-coding weight and sends the pre-coded data.
Abstract:
Provided are a method and apparatus for occupying an unlicensed carrier to send a discovery signal, and an access point. The method includes the following steps. A parameter of a discovery signal sent on an unlicensed carrier by an access point is configured. The access point sends the discovery signal on the unlicensed carrier. The technical solution of the present disclosure can reduce the time for processing items other than data sending (such as synchronization) after each time the access point preempts a resource, and can improve the spectral efficiency of the unlicensed carrier.
Abstract:
An information processing method, a corresponding base station and terminal are disclosed. The method includes presetting a subframe structure comprising at least a first time slot and a second time slot, herein the first time slot is used for transmission of a downlink signal; or is idle; or is switched to reception of an uplink signal and schedules transmission of the uplink signal or does not schedule transmission of the uplink signal; or is switched to reception of a signal for only performing reception and measurement of other signals but does not schedule transmission of the uplink signal; and the second time slot is used for reception of an uplink signal and schedules transmission of the uplink signal; or is idle, or is switched to reception of a signal for only performing measurement but does not schedule the uplink signal.
Abstract:
A Discovery Signal (DS) processing method and device is provided. In the method, at least one of the following operations is executed on each component signal of a DS: determining a configuration manner of each component signal; performing pattern modification on each component signal; and determining a transmission manner of each component signal or each pattern-modified component signal.
Abstract:
The disclosure discloses a carrier selecting method and device, an access point and a storage medium. The method includes that: an access point selects unlicensed carriers satisfying a first condition from unlicensed carriers as a first carrier set; sends a discovery signal on all unlicensed carriers in the first carrier set; and the access point receives a measurement result performed by a user equipment on all the unlicensed carriers in the first carrier set, and selects unlicensed carriers satisfying a second condition from the first carrier set based on the measurement result as carrier resources of the access point.
Abstract:
A discovery signal measurement method, base station and terminal, wherein the method includes: a base station determining measurement patterns used by different terminals for measuring discovery signals according to transmission patterns of discovery signals; the base station configuring measurement patterns corresponding to the terminals for the terminals; the base station transmitting the discovery signals in cells corresponding to the transmission pattern according to the transmission patterns. The method, base station and terminal according to the embodiment of the present invention provide a definite solution for configuring measurement patterns of discovery signals.
Abstract:
A method and device for multi-access point calibration are disclosed. The method includes: a base station estimating a value closest to a true parameter deviation in a value interval of an uplink and downlink channel parameter deviation between access points, wherein the parameter deviation includes a phase difference and an amplitude difference; and the base station performing phase and/or amplitude calibration on service data transmitted jointly by the access points according to the value. With the method and device provided in the present document, a cell calculates a parameter difference between different access points, and then calibrates multiple access points according to the parameter difference, so as to solve a problem that the phase difference and amplitude difference exist between the data transmitted jointly between the multiple access points, and thus it can be guaranteed that good coherent transmission is performed between the access points, thereby improving the system performance.