Abstract:
A transactional memory (TM) includes a control circuit pipeline and an associated memory unit. The memory unit stores a plurality of rings. The pipeline maintains, for each ring, a head pointer and a tail pointer. A ring operation stage of the pipeline maintains the pointers as values are put onto and are taken off the rings. A put command causes the TM to put a value into a ring, provided the ring is not full. A get command causes the TM to take a value off a ring, provided the ring is not empty. A put with low priority command causes the TM to put a value into a ring, provided the ring has at least a predetermined amount of free buffer space. A get from a set of rings command causes the TM to get a value from the highest priority non-empty ring (of a specified set of rings).
Abstract:
A transactional memory (TM) receives a lookup command across a bus from a processor. The command includes a memory address, a starting bit position, and a mask size. In response to the command, the TM pulls an input value (IV). The memory address is used to read a word containing multiple result values (RVs) and multiple key values from memory. Each key value indicates a single RV to be output by the TM. A selecting circuit within the TM uses the starting bit position and mask size to select a portion of the IV. The portion of the IV is a key selector value. A key value is selected based upon the key selector value. A RV is selected based upon the key value. The key value is selected by a key selection circuit. The RV is selected by a result value selection circuit.
Abstract:
A network appliance includes a first processor, a second processor, a first storage device, and a second storage device. A first status information is stored in the first storage device. The first processor is coupled to the first storage device. A queue of data is stored in the second storage device. The first status information indicates if traffic data stored in the queue of data is permitted to be transmitted. The second processor is coupled to the second storage device. The first processor communicates with the second processor. The traffic data includes packet information. The first storage device is a high speed memory only accessible to the first processor. The second storage device is a high capacity memory accessible to multiple processors. The first status information is a permitted bit that indicates if the traffic data within the queue of data is permitted to be transmitted.
Abstract:
A transactional memory (TM) receives a lookup command across a bus from a processor. The command includes a memory address. In response to the command, the TM pulls an input value (IV). The memory address is used to read a word containing multiple result values (RVs), multiple reference values, and multiple mask values from memory. A selecting circuit within the TM uses a starting bit position and a mask size to select a portion of the IV. The portion of the IV is a lookup key value (LKV). The LKV is masked by each mask value thereby generating multiple masked values. Each masked value is compared to a reference value thereby generating multiple comparison values. A lookup table generates a selector value based upon the comparison values. A result value is selected based on the selector value. The selected result value is then communicated to the processor via the bus.
Abstract:
A system and method for handling a digital electronic flow between a first and second entity in which a flow policy is determined that is to be applied to the flow and the flow is then directed along a path in accordance with the policy. An ID is supplied for each flow and a tag associated with each flow which indicates the policy to be applied to its associated flow. Flows are also associated with one another, with associated flows having associated policies. In particular the flow may be processed or forwarded. The path may include a graph structure and virtual applications.
Abstract:
A flow key is determined from an incoming packet. Two hash values A and B are then generated from the flow key. Hash value A is an index into a hash table to identify a hash bucket. Multiple simultaneous CAM lookup operations are performed on fields of the bucket to determine which ones of the fields store hash value B. For each populated field there is a corresponding entry in a key table and in other tables. The key table entry corresponding to each field that stores hash value B is checked to determine if that key table entry stores the original flow key. When the key table entry that stores the original flow key is identified, then the corresponding entries in the other tables are determined to be a “lookup output information value”. This value indicates how the packet is to be handled/forwarded by the network appliance.
Abstract:
A transactional memory (TM) receives an Atomic Metering Command (AMC) across a bus from a processor. The command includes a memory address and a meter pair indicator value. In response to the AMC, the TM pulls an input value (IV). The TM uses the memory address to read a word including multiple credit values from a memory unit. Circuitry within the TM selects a pair of credit values, subtracts the IV from each of the pair of credit values thereby generating a pair of decremented credit values, compares the pair of decremented credit values with a threshold value, respectively, thereby generating a pair of indicator values, performs a lookup based upon the pair of indicator values and the meter pair indicator value, and outputs a selector value and a result value that represents a meter color. The selector value determines the credit values written back to the memory unit.
Abstract:
A lookup engine of a transactional memory (TM) has multiple hardware lookup structures, each usable to perform a different type of lookup. In response to a lookup command, the lookup engine reads a first block of first information from a memory unit. The first information configures the lookup engine to perform a first type of lookup, thereby identifying a first result value. If the first result value is not a final result value, then the lookup engine uses address information in the first result value to read a second block of second information. The second information configures the lookup engine to perform a second type of lookup, thereby identifying a second result value. This process repeats until a final result value is obtained. The type of lookup performed is determined by the result value of the preceding lookup and/or type information of the block of information for the next lookup.
Abstract:
An island-based network flow processor (IB-NFP) integrated circuit includes rectangular islands disposed in rows. In one example, the configurable mesh data bus is configurable to form a command/push/pull data bus over which multiple transactions can occur simultaneously on different parts of the integrated circuit. The rectangular islands of one row are oriented in staggered relation with respect to the rectangular islands of the next row. The left and right edges of islands in a row align with left and right edges of islands two rows down in the row structure. The data bus involves multiple meshes. In each mesh, the island has a centrally located crossbar switch and six radiating half links, and half links down to functional circuitry of the island. The staggered orientation of the islands, and the structure of the half links, allows half links of adjacent islands to align with one another.
Abstract:
A transactional memory (TM) receives a lookup command across a bus from a processor. The command includes a memory address. In response to the command, the TM pulls an input value (IV). The memory address is used to read a word containing multiple result values (RVs), multiple reference values, and multiple prefix values from memory. A selecting circuit within the TM uses a starting bit position and a mask size to select a portion of the IV. The portion of the IV is a lookup key value (LKV). Mask values are generated based on the prefix values. The LKV is masked by each mask value thereby generating multiple masked values that are compared to the reference values. Based on the comparison a lookup table generates a selector value that is used to select a result value. The selected result value is then communicated to the processor via the bus.