摘要:
Embodiments of systems and methods for planning and/or delivering an oral or facial endosseous implantation in a patient are described. In certain embodiments, systems according to the invention include a processing module; a surface imaging scan and a CT scan which utilizes a locator mouthpiece having a plurality of reference points thereon and can send scanned data to a treatment planning module. A processing module processes the data and the surface data into an output that includes three-dimensional (3-D) representation data indicative of at least one of an oral structure and a facial structure of the patient. In certain embodiments, a system includes a fabrication module that produces a physical model based on the 3-D representation data and indicating a planned location of an endosseous implant. In certain embodiments, a system includes a surgical module that guides implantation of an endosseous implant based on the 3-D representation data. The system may also provide a robotic implantation device which may assist the dental professional in placing the implant into the oral structure of an individual patient.
摘要:
A device (10) for acquiring data in the mouth of a patient, wherein the device (10) comprises an ultrasound sensor (20) and a support structure. The ultrasound sensor (20) is stored by means of the support structure when not in use and contains ultrasound deflection means (12) which are movable. A coupling body (21) is provided, which is arranged between the ultrasound deflection means (12) and a tooth area (1, 2, 3) or remaining tooth area to be swept over Excitation signals (14) are sent to the ultrasound sensor (20) and the ultrasound deflection means (12) are moved in order to thus produce an ultrasonic wave which sweeps over at least part of the tooth area (1, 2, 3) or remaining tooth area.
摘要:
A method and apparatus for facilitating placement and evaluation of virtual appliances on virtual teeth of an orthodontic patient are described. Positioning references comprising bracket height, occlusal plane, or any arbitrary plane are provided to facilitate desired placement of virtual appliances on virtual teeth model. The process can be applied with any dentition state of a patient such as malocclusion, target state from treatment, or intermediate monitored state during the course of a treatment. An unified workstation for treatment planning provides the computer software tools for verification, simulation and evaluation of the virtual appliance placement. The process enables proper planning of treatment for an orthodontic patient suffering from malocclusion involving bonding of virtual brackets to the surface of the patient's virtual teeth with archwires placed in the slots of the brackets, so as to realize the desired results from the treatment in the most desired manner.
摘要:
An integrated system is described in which digital image data of a patient, obtained from a variety of image sources, including CT scanner, X-Ray, 2D or 3D scanners and color photographs, are combined into a common coordinate system to create a virtual three-dimensional patient model. Software tools are provided for manipulating the virtual patient model to simulation changes in position or orientation of craniofacial structures (e.g., jaw or teeth) and simulate their affect on the appearance of the patient. The simulation (which may be pure simulations or may be so-called “morphing” type simulations) enables a comprehensive approach to planning treatment for the patient. In one embodiment, the treatment may encompass orthodontic treatment. Similarly, surgical treatment plans can be created. Data is extracted from the virtual patient model or simulations thereof for purposes of manufacture of customized therapeutic devices for any component of the craniofacial structures, e.g., orthodontic appliances.
摘要:
Methods and systems for making a computer model of a patient's jaws on the basis of digital information from computed tomography and non-radiographic digital imaging of the patient's teeth or dental casts of their teeth.
摘要:
A scanning system that acquires three-dimensional images as an incremental series of fitted three-dimensional data sets is improved by testing for successful incremental fits in real time and providing a variety of visual user cues and process modifications depending upon the relationship of newly acquired data to previously acquired data. The system may be used to aid in error-free completion of three-dimensional scans. The methods and systems described herein may also usefully be employed to scan complex surfaces including occluded or obstructed surfaces by maintaining a continuous three-dimensional scan across separated subsections of the surface. In one useful dentistry application, a full three-dimensional surface scan may be obtained for two dental arches in occlusion.
摘要:
A process for preparing a water-soluble, radio-opaque paint for marking acrylic resin dental stents includes the steps of preparing a solution comprising 50 ml of ethanol, 6.4 grams of glycerol; 4.0 ml of benzaldehyde; 1.0 ml of glacial acetic acid, and 0.15 grams of hydroxy propyl cellulose. A radio-opaque powder, such as 50 grams of barium sulfate powder having a mean particle diameter of about 10 .mu.m, is then added to the solution. The solution is then mixed to obtain the paint, wherein the paint has a uniform dispersion of the radio-opaque powder. This paint may be used on dental stents to locate and guide placement of dental implants. The method may include the steps of preparing a water-soluble, radio-opaque paint for marking dental stents comprising the steps of preparing a solution described above; adding a radio-opaque powder, such as 50 grams of barium sulfate powder; and mixing the solution to obtain the paint, wherein the paint has a uniform dispersion of the radio-opaque powder. The uniform dispersion may be obtained by using ultrasound. Further, the method comprises applying the paint to a dental stent; placing the stent in contact with a patient's teeth; taking a radiographic image of the stent and the patient's teeth. The stent then is removed from the patient's teeth, and the paint is removed from the stent.
摘要:
Disclosed is a computer-implemented method of using a dynamic virtual articulator for simulating occlusion of teeth, when performing computer-aided designing of one or more dental restorations for a patient, where the method includes the steps of: providing the virtual articulator including a virtual three-dimensional model of the upper jaw and a virtual three-dimensional model of the lower jaw resembling the upper jaw and lower jaw, respectively, of the patient's mouth; providing movement of the virtual upper jaw and the virtual lower jaw relative to each other for simulating dynamic occlusion, whereby collisions between teeth in the virtual upper and virtual lower jaw occur; wherein the method further includes: providing that the teeth in the virtual upper jaw and virtual lower jaw are blocked from penetrating each other's virtual surfaces in the collisions.
摘要:
A surgical apparatus, system and methodology are provided that may be utilized to treat a plurality of medical conditions. A robotic apparatus may be utilized in the treatment of a medical condition or to assist a medical professional in a surgical procedure. Additionally, the robotic apparatus and system may be utilized during a surgical procedure to provide guidance and to narrow the margin of error. In an exemplary embodiment, a scan may first be performed on a patient to determine a plurality of surgically necessary characteristics, such as bone density, locations, and the like. A virtual treatment plan may be provided by the system. An active and/or passive robotic apparatus may be provided to assist in the surgical technique. The robotic apparatus may be an active robotic which includes surgical tools whereby the medical professional may perform the surgical technique with the assistance of the active robotic apparatus.