Abstract:
Methods for planning delivery of radiation dose to a target region within a subject comprise: initializing a first plurality of control points located on a trajectory, the trajectory comprising relative movement between a radiation source and the subject, wherein initializing the first plurality of control points comprises assigning, to each the first plurality of control points, one or more axis positions which specify a position of the radiation source relative to the subject; specifying a second plurality of control points along the trajectory, the second plurality of control points comprising a larger number of control points than the first plurality of control points; and iteratively optimizing a stimulated dose distribution over the second plurality of control points to thereby determine a radiation delivery plan by assigning each of the second plurality of control points optimized values for one or more radiation delivery parameters.
Abstract:
Methods and apparatus are provided for planning and delivering radiation treatments by modalities which involve moving a radiation source along a trajectory relative to a subject while delivering radiation to the subject. In some embodiments the radiation source is moved continuously along the trajectory while in some embodiments the radiation source is moved intermittently. Some embodiments involve the optimization of the radiation delivery plan to meet various optimization goals while meeting a number of constraints. For each of a number of control points along a trajectory, a radiation delivery plan may comprise: a set of motion axes parameters, a set of beam shape parameters and a beam intensity.
Abstract:
A charged particle beam reduces treatment time in the uniform scanning or in the conformal layer stacking irradiation. In the uniform scanning, an optimum charged particle beam scan path for uniformly irradiating a collimator aperture area is calculated. In the conformal layer stacking irradiation, an optimum charged particle beam scan path for uniformly irradiating a multi-leaf collimator aperture area of each layer for each of the layers obtained by partitioning the target volume is calculated. Alternatively, a minimum irradiation field size that covers the multi-leaf collimator aperture area of each layer is calculated, and a scan path corresponding to the irradiation field size, prestored in a memory of a particle therapy control apparatus, is selected. The charged particle beam scan path is optimally changed in the lateral directions in conformity with the collimator aperture area in the uniform scanning or in each layer in the conformal layer stacking irradiation.
Abstract:
A method and system for providing intensity modulated radiation therapy to a moving target is disclosed. According to a preferred embodiment of the invention, a treatment plan for providing radiotherapy using a multi-leaf collimator (“MLC”) comprises a plurality of sub-plans, each of which is optimized for a different phase of target movement. Movements of the treatment target are tracked in real time, and the choice of which sub-plan to implement is made in real time based on the tracked position of the target. Each of the sub-plans is preferably formulated to minimize interplay effects between target movements and MLC leaf movements, consistent with other planning goals. In addition, the sub-plans preferably include a predicted region corresponding to the next anticipated position of the target, in order to facilitate the transition to the next position.
Abstract:
A control circuit optimizes a radiation-treatment plan to provide an initially-optimized radiation-treatment plan and then modifies that initially-optimized radiation-treatment plan to reduce corresponding monitor units (MU's) to provide a radiation-treatment plan that is further optimized for monitor units. This modification can comprise, at least in part, imposing a stronger smoothing constraint with respect to fluence. Optimizing a radiation-treatment plan to provide an initially-optimized radiation-treatment plan can comprise identifying at least one particular leaf pair for a multi-leaf collimator that requires a longest amount of time to move into a position that achieves a particular desired fluence and then selectively smoothing position requirements of that particular leaf pair to reduce the amount of time associated with that particular leaf pair while not also smoothing position requirements for all leaf pairs as comprise that multi-leaf collimator.
Abstract:
A particle beam treatment device includes an irradiation nozzle which moves a particle beam in a direction which is perpendicular to an advancing direction; a dose monitor which measures the dose of the particle beam; a planning part which sets the irradiation dose applied to a target volume; and a controlling part which controls the irradiation dose applied to a target volume based on irradiation dose set value which is set by a value measured by the dose monitor and the planning part, wherein the planning part stores the absorbed dose distribution data in the depth direction which is prepared in advance using the absorbed dose at the reference depth which is a predetermined position nearer to an incident side of the particle beam than the position of Bragg peak as the reference and calculates the irradiation dose set value using the absorbed dose at the reference depth.
Abstract:
Determine first information regarding physical-movement limitations pertaining to at least one multi-leaf collimator and also determine second information regarding movement of the treatment target with respect to the given patient. Then, while optimizing a radiation-treatment leaf-sequence plan, constrain individually-planned leaf positions as a function, at least in part, of the first information, the second information, and planned positions of adjacent leaves. By one approach, the first information can comprise information regarding a speed (such as a maximum speed) at which individual leaves of the multi-leaf collimator are able to move during a treatment session. By one approach, the second information can comprise information regarding a distance (such as a maximum distance) that one or more parts of the treatment target may possibly move as compared to a presumed position used during the optimizing of the radiation-treatment leaf-sequence plan.
Abstract:
A method and system for providing intensity modulated radiation therapy to a moving target is disclosed. According to a preferred embodiment of the invention, a treatment plan for providing radiotherapy using a multi-leaf collimator (“MLC”) comprises a plurality of sub-plans, each of which is optimized for a different phase of target movement. Movements of the treatment target are tracked in real time, and the choice of which sub-plan to implement is made in real time based on the tracked position of the target. Each of the sub-plans is preferably formulated to minimize interplay effects between target movements and MLC leaf movements, consistent with other planning goals. In addition, the sub-plans preferably include a predicted region corresponding to the next anticipated position of the target, in order to facilitate the transition to the next position.
Abstract:
Methods and apparatus are provided for planning and delivering radiation treatments by modalities which involve moving a radiation source along a trajectory relative to a subject while delivering radiation to the subject. In some embodiments the radiation source is moved continuously along the trajectory while in some embodiments the radiation source is moved intermittently. Some embodiments involve the optimization of the radiation delivery plan to meet various optimization goals while meeting a number of constraints. For each of a number of control points along a trajectory, a radiation delivery plan may comprise: a set of motion axes parameters, a set of beam shape parameters and a beam intensity.
Abstract:
A deliverable four dimensional (4D) intensity modulated radiation therapy (IMRT) planning method is disclosed, for delivery using a linear accelerator with a dynamic multi-leaf collimator (DMLC). A 4D computed tomography (CT) scan is used for segmenting tumor anatomy on a reference phase of periodic motion of the tumor. Deformable registration of the 4D CT data is used to generate corresponding anatomical structures on other phases. Preferably, the collimator for each beam position is aligned using the gross tumor volume (GTV) centroid motion corresponding to the periodic motion of the tumor, as determined from the two dimensional (2D) projection of a given beam position. A deliverable IMRT plan is created on the 4D CT image set in which the MLC leaf positions and beam on/off status can vary as a function of respiratory phase by solving a four dimensional optimization problem. The mechanical constraints of the MLC leaves are included in the optimization.