Abstract:
A work tool includes a motor, a driving mechanism, a body housing and a handle. The driving mechanism is configured to perform an operation of linearly reciprocating the tool accessory along a driving axis extending in a front-rear direction. The handle includes a grip part extending substantially in an up-down direction, and a battery-mounting part provided on a lower side of the grip part. An upper end portion of the handle is connected to a rear end portion of the body housing via an elastic member so as to be movable relative to the body housing. A lower end portion of the handle is connected to the rear end portion of the body housing so as to be rotatable relative to the body housing, around a rotation axis extending in a left-right direction. The rotation axis is located on a lower side of the battery-mounting part.
Abstract:
Kickback control methods for power tools. One power tool includes a movement sensor configured to measure an angular velocity of the housing of the power tool, and an orientation sensor configured to measure an orientation of the housing. The power tool includes an electronic processor coupled to a switching network and a trigger. To implement the kickback control, the electronic processor is configured to receive measurements of the angular velocity of the housing, receive measurements of the orientation of the housing, determine a binding condition of the power tool based on the measurements of the angular velocity and the measurements of orientation, and control the switching network to cease driving of the brushless DC motor.
Abstract:
A hand-held power tool has a tool holder for holding a tool along a working axis. A hammer mechanism has a striker that is moved periodically at an impact rate along the working axis between a turning point in the proximity of the tool and a turning point remote from the tool. A drive control of the hammer mechanism sets the impact rate to a set point value. A vibration absorber has an oscillator that moves along the working axis about a resting position and one or multiple springs that drive the oscillator back into the resting position. A first sensor is used to determine a phase of the motion of the striker. A sensor is used to determine a first phase of a compression point of the hammer mechanism. Another sensor is used to determine a second phase of a turning point in the proximity of the tool, of the hammer mechanism. A damping controller adapts the set point value in such a way that a phase difference between the first phase and the second phase is less than a threshold value.
Abstract:
The control method for a hammer drill (1) provides the following steps. During basic operation, the motor (5) rotates at an operating speed for the drilling operation with chiseling action in order to rotationally drive the tool holder (2) and to drive the hammer mechanism (6) with a nominal striking power. The torque coupling (21) is monitored with the aid of a sensor (26). If a disengagement of the torque coupling (21) occurs, the striking power of the hammer mechanism (6) is reduced to below 10% of the nominal striking power during a disengagement of the torque coupling (21), and the torque coupling (21) is driven. When the disengagement of the torque coupling (21) ends, the striking power of the hammer mechanism (6) is increased to the nominal striking power and the torque coupling (21) is driven at the operating speed for the drilling operation with chiseling action.
Abstract:
A percussion unit, especially for a rotary hammer and/or percussion hammer, includes a control unit that is configured for open-loop and/or closed loop control of a drive unit and/or a pneumatic percussion mechanism. The percussion unit further includes a pressure sensor unit that is configured to measure a pressure curve in order to detect at least one state of the percussion mechanism.
Abstract:
A speed adjustment mechanism for a power tool is disclosed. The mechanism includes a support, a first toothed gear for rotation by means of an adjustment dial, and a second toothed gear rotatable by means of the first toothed gear and connected to a potentiometer which is connected to a speed control circuit. Limited movement of the first and second toothed gears relative to each other is possible to reduce transmission of impacts from the adjustment dial to the speed control circuit.
Abstract:
An electric boring tool comprises an electric motor, a switch trigger, a tip tool driven by driving force of the electric motor, a power transmission mechanism for transmitting the driving force of the electric motor to the tip tool as rotational force and/or hammer force, and a motor control unit for controlling speed of the electric motor in response to an extent of pulling of the switch trigger. The motor control unit subjects the electric motor to low speed control after the electric motor is started up, and controls the speed of the electric motor in response to the extent of pulling of the switch trigger when the load current of the electric motor is set value or greater during the low speed control.
Abstract:
It is an object of the present invention to provide a vibration reducing technique caused by air pressure fluctuations within a power tool. According to the present invention, a representative power tool may comprise a driving motor, a driver and a tool bit. The driving motor drives the driver to cyclically reciprocate. The tool bit is linearly driven by utilizing the pressure of air within the power tool. The air may be compressed by the reciprocating movement of the driver. The power tool changes the rotational speed of the driving motor in the cycle of the reciprocating movement of the driver so that vibration caused in the power tool can be alleviated.
Abstract:
A percussion mechanism for a repetitively hammering hand power tool, whose striking frequency and striking intensity are controllable independently of one another, has a striker (2), movable axially forward and backward in a guide barrel (1), and a device (5) exerting pressure on the striker (2), as a result of which the striker can be set into a forward motion in the direction of a tool bit (4) that is insertable into the hand power tool. A blocking element (10) is also provided, with which the striker (2) is blockable in its forward motion, and the striking frequency of the striker (2) is adjustable by controlling the blocking time of the blocking element (10).
Abstract:
An impact drill includes a first ratchet rotating along with a spindle and movable in an axial direction, a second ratchet engaged with the first ratchet and movable in a axial direction but unrotatable, and a spring provided between the second ratchet and a partial member of a housing. An amount of movement of the spindle in the axial direction is regulated, so that the pressing force is too excessive, the restoring force of the spring urging the second ratchet is controlled to maintain a state of generating a set stroke force.