Abstract:
Disclosed herein is an adjustable width drive axle including: a main axle body including a telescoping portion disposed at each end of the main axle body; a sprocket affixed to each end of the main axle body, the sprocket designed to engage a drive unit; a first spacer removably affixed to the sprocket, the first spacer disposed around the telescoping portion of the main axle body; and a hub removably affixed to an end of the first spacer opposite the sprocket, wherein one or more additional spacers may be interposed between the first spacer and the hub or between the sprocket and the first spacer to adjust the width of the axle.
Abstract:
A method of manufacturing alloy rim for automobile is disclosed. The method comprises the steps of forming elongated extruded alloy straps with a cross-section shape from alloy by an extruding process; cutting the extruded alloy into the required length; placing the cut alloy obtained in (b) onto a mold to form into an arch-shaped edge; cutting the two ends of the edges of the extruded alloy to form into an inclined angle end; placing the extruded alloy of (d) into a device to form the alloy into a round rim; welding the ends of the two joining ends; performing a surface hardening process; furnishing the rim that obtained in (g) with CNC lathe machine.
Abstract:
An adjustable gauge tractor wheel for clamping on an axle has non-circular surfaces for clamping on a non-circular portion of the axle and a wedging construction comprising a gib received within the wheel hub and having a pair of inclined plane surfaces confronting the axle. A pair of wedges extending between the plane surfaces of the gib and the axle are forced into wedging position by a bolt engaging both wedges. Reverse rotation of the bolt retracts the wedges for adjustment of the wheel.