Abstract:
A control system configured to control a deceleration process of an air vehicle which comprises at least one tiltable propulsion unit, each of the at least one tiltable propulsion units is tiltable to provide a thrust whose direction is variable at least between a general vertical thrust vector direction and a general longitudinal thrust vector direction with respect to the air vehicle.
Abstract:
A propeller alignment device is described. The propeller alignment device can include a second retainer attached to a propeller and a motor. The propeller alignment device can also include a first retainer that does not rotate, but that is aligned with the second retainer. The first retainer can include two or more magnets oppositely orientated relative to each other. The second retainer can also include two or more magnets oppositely orientated relative to each other. As the second retainer rotates relative to the first retainer, the magnets may alternatingly align with each other. In the absence of a current applied to the motor, the magnets may magnetically bias the second retainer into a predetermined orientation relative to the first retainer. The predetermined orientation can be predetermined to correspond to an alignment of the propeller that is desirable (e.g., that minimizes aerodynamic drag on the propeller).
Abstract:
Concepts and technologies disclosed herein are directed to intelligent drone traffic management via a radio access network (“RAN”). As disclosed herein, a RAN node, such as an eNodeB, can receive, from a drone, a flight configuration. The flight configuration can include a drone ID and a drone route. The RAN node can determine whether capacity is available in an airspace associated with the RAN node. In response to determining that capacity is available in the airspace associated with the RAN node, the RAN node can add the drone ID to a queue of drones awaiting use of the airspace associated with the RAN node. When the drone ID is next in the queue of drones awaiting use of the airspace associated with the RAN node, the RAN node can instruct the drone to fly through at least a portion of the airspace in accordance with the drone route.
Abstract:
A repeatably reconfigurable robot, comprising at least two printed circuit board (PCB) rigid sections, at least one PCB flexible section coupled to the at least two PCB rigid sections, at least one wheel, hybrid wheel propeller, wheel and propeller, or hybrid wheel screw propeller rotatably coupled to at least one of the at least two PCB rigid sections and at least one actuator coupled to the at least two PCB rigid sections, wherein the at least one actuator folds and unfolds the repeatably reconfigurable robot.
Abstract:
In one embodiment, a controller instructs an unmanned aerial vehicle (UAV) docked to a landing perch to perform a pre-flight test operation of a pre-flight test routine. The controller receives sensor data associated with the pre-flight test operation from one or more force sensors of the landing perch, in response to the UAV performing the pre-flight test operation. The controller determines whether the sensor data associated with the pre-flight test operation is within an acceptable range. The controller causes the UAV to launch from the landing perch based in part on a determination that UAV has passed the pre-flight test routine.
Abstract:
An aircraft includes a fuselage, a wing, a ducted fan and a controller. The wing and the ducted fan are coupled to the fuselage. The controller is operable to control the aircraft in a vertical flight mode, a horizontal flight more, and transition the aircraft from the vertical flight mode to the horizontal flight mode.
Abstract:
A VTOL aircraft is disclosed comprising a plurality of autonomous lifting modules wherein each autonomous lifting module is composed of a physical structure in which are mounted one or more electric ducted fans, an electrical energy storage system to drive the electric ducted fans, a charging and energy storage monitoring system to charge and monitor the electrical energy storage system, an inertial navigation system, electronic speed controllers to control the electric ducted fans and one or more microcomputers assuring (a) module flight stability by control of the electric ducted fans given the input of the inertial navigation system, (b) flight planning and (c) inter-module communication.
Abstract:
A propeller includes a hub coaxially surrounding a longitudinal axis. A ring shroud coaxially surrounds the longitudinal axis and is spaced radially from the hub. At least one propeller blade is fixedly attached to both the hub and ring shroud and extends radially therebetween for mutual rotation therewith. At least one stub blade has a first stub end radially spaced from a second stub end. The first stub end is fixedly attached to a selected one of the hub and ring shroud. The second stub end is cantilevered from the first stub end and is radially interposed between the first stub end and the selected one of the hub and ring shroud.
Abstract:
Provided is an amphibious vertical takeoff and landing unmanned device comprising a modular and expandable waterproof body, a chassis, an outer body shell, a propulsion system, a propeller protection system, a surface skidding material platform, a landing system, control surfaces, a ballast, an onboard air compressor, an onboard electrolysis system, a waterproof through-body wire or antenna feed-through, a single- or multiple-axis tilt-motor device, a tilt fuselage device, a tilt wing device, a battery, a power distribution board, a Global Positioning System module, a lost model alert, a cooling device, a detachable impact absorbing skin or shell, vision aiding and orientative lights, hatches, quick connect payloads, a lap counter for racing, a flat or inclined launch platform or footing, claws, an apparatus for externally attaching and internally housing the cargo, a charging station, a partial vacuum device, a manually or automatically deployable parachute, and an onboard or ground station electricity generator.
Abstract:
An electric and hybrid Vertical-Take Off and Landing (“VTOL”) aircraft is disclosed comprising a plurality of small Electric Ducted Fans (“EDFs”) of various sizes and orientations. The thrust of each fixed EDF is individually controlled by modulation of motor power by one or more onboard microcomputers connected to a plurality of onboard laser distance measuring sensors, at least three onboard three-axis accelerometers and at least one GPS thereby allowing extremely precise and safe VTOL operation. The aircraft may be employed to allow robotic and passenger vehicles to transition extremely quickly between normal linear flight and VTOL and to operate in extreme and gusty conditions.