Abstract:
A computer-controlled method for forming a composition-controlled product using 3D printing includes disposing two or more liquid reactant compositions in respective two or more reservoirs; and mixing the two or more liquid reactant compositions, which in turn includes controlling by the computer a mass ratio of the mixed two or more liquid reactant compositions. The computer-controlled method further includes scanning, under control of the computer, a mixed liquid reactants nozzle over a substrate; depositing the mixed liquid reactant compositions onto the substrate; and operating, under control of the computer, a light source to polymerize the deposited mixed liquid reactant compositions.
Abstract:
A method for making a polymer with a porous layer from a solid piece of polymer is disclosed. In various embodiments, the method includes heating a surface of a solid piece of polymer to a processing temperature below a melting point of the polymer and holding the processing temperature while displacing a porogen layer through the surface of the polymer to create a matrix layer of the solid polymer body comprising the polymer and the porogen layer. In at least one embodiment, the method also includes removing at least a portion of the layer of porogen from the matrix layer to create a porous layer of the solid piece of polymer.
Abstract:
A method for making a polymer with a porous layer from a solid piece of polymer is disclosed. In various embodiments, the method includes heating a surface of a solid piece of polymer to a processing temperature below a melting point of the polymer and holding the processing temperature while displacing a porogen layer through the surface of the polymer to create a matrix layer of the solid polymer body comprising the polymer and the porogen layer. In at least one embodiment, the method also includes removing at least a portion of the layer of porogen from the matrix layer to create a porous layer of the solid piece of polymer.
Abstract:
An upright column is packed with particles of a first material so the particles touch one another and a network of voids is defined between the particles. The network will be substantially continuous. A second material is then introduced into the column so the second material penetrates the network and fills the voids. The mixture of first and second materials is then consolidated using heat to melt the first or second material, while the other one of the first or second material remains in a solid state and acts as a space holder. Thereafter, the material which acts as the space holder may be removed thereby to leave a substantially continuous porous network defined by the material which was melted. It is found that, by use of the method, a substantially continuous network of the material which is melted can be formed and that the other material can readily be removed and/or is more easily removed compared to if a mixture of first and second materials was formed prior to packing in a column or mold.
Abstract:
The present invention includes compositions, methods, systems of making a composition that includes one or more active agent; a recognitive polymeric matrix; and a porosigen, wherein the composition comprises a porous recognitive, swellable hydrogel that dissociates under conditions of low water or humidity.
Abstract:
A composite structure comprising a first porous portion comprising a plurality of interconnected pores and a second solid portion having a first surface, said first surface secured to said first portion wherein said first and second portions are fabricated from a polymer material. The material may be suitable for implant, illustratively vertebral or spinal implants, comprising a rigid biocompatible polymer such as PEEK comprising a plurality of interconnected pores. The polymer illustratively has a porosity of between 50% and 85% by volume and in a particular embodiment is able to withstand pressures of up to 20 MPa. The porous PEEK material may also have a minimum thickness in any dimension of one (1) inch.
Abstract:
A composition containing poly(lactic acid), at least one bacteriocin (e.g., nisin, generally in the form of Nisaplin®), and at least one plasticizer (e.g., lactic acid, lactide, triacetin, glycerol triacetate), and optionally at least one pore forming agent. A method of making the composition, involving mixing about 100% of the total of the poly(lactic acid), about 50% to about 90% of the total of the at least one plasticizer, and optionally at least one pore forming agent at a first temperature of about 150° to about 170° C. to form a mixture, cooling the mixture to a second temperature of about 115° to about 125° C., adding at least one bacteriocin and about 10% to about 50% of the total of the at least one plasticizer and the remainder of the total of the poly(lactic acid) to the mixture and mixing to form the composition.
Abstract:
A method to make a silicone foam. A layer of crystalline material is embedded in a layer of uncured silicone. The crystalline material is closely packed in crystal-to-crystal contact, the crystals being provided in a plurality of sizes or ranges of size to increase the packing ratio of the crystals as a group. The silicone is cured and then the crystals are dissolved out with a solvent that dissolves them but does not dissolve the silicone.
Abstract:
A process for making a polyamide-acid powder comprises reacting at least one diamine of the formula H2N-R1-NH2, where R is a divalent polycyclic aromatic radical in which no more than one NH2 group is substituted in any one aromatic ring, with at least one tetracarboxylic acid dianhydride of the formula where R is a tetravalent radical containing at least one 6-carbon atom ring having benzenoid unsaturation and wherein the four carbonyl groups are attached to different carbon atoms in a ring of the R radical and wherein each pair of carbonyl groups is attached to adjacent carbon atoms in a 6-membered benzenoid ring of the R radical, in an organic solvent for at least one of the reactants, the solvent being inert to the reactants, at a temperature below 75 DEG C., to form a solution of a polymer containing polyamide-acid having an inherent viscosity of at least 0.1, and then mixing the solution with a precipitant for the polyamide-acid to precipitate a particulate, polymeric solid. The precipitate may be converted to the corresponding polyimide by (1) reacting with a lower fatty monobasic acid preferably in the presence of a tertiary amine and/or (2) heating at a temperature above 50 DEG C. The inherent viscosity is measured at 35 DEG C. at a concentration of 0.5% by weight of the polymer in N:N-dimethyl acetamide. Many diamines, tetracarboxylic acid dianhydrides, solvents and precipitants are specified. The examples describe the preparation of polyamide-acid powders from:-(1) 4:41-diamino diphenyl ether and pyromellitic dianhydride and (2) bis-(3:4-dicarboxyphenyl) ether dianhydride and 1:3-bis-(p-amino-phenoxy) benzene.
Abstract:
A foam composition that includes a polymer material such as polyurethane or polyurea and a leachable water-soluble fine powder is provided. This composition can be used in a relatively simple process to obtain a foam body (porous body) that is uniform only at the surface or uniform throughout. The foam body can be suitably used as a golf ball member in golf balls required to have good controllability on approach shots. Also provided is a method for producing a foam member, which method includes the steps of molding the foam composition to obtain a solid molded body, and then leaching out and removing the water-soluble fine powder so as to obtain a foam-molded body.