Abstract:
The present disclosure relates to a three-dimensionally (3D) printed tissue engineering scaffold for tissue regeneration and a method for manufacturing the 3D printed tissue engineering scaffold. The 3D printed tissue engineering scaffold may be fabricated at least in part from a composite material having an insoluble component and soluble component. The three-dimensional tissue scaffolds of the disclosure may be fabricated via a rapid prototyping machine. In some instances, the three-dimensional shape of the fabricated tissue engineering scaffold may correspond to a three-dimensional shape of a tissue defect of a patient.
Abstract:
Process for the production of a polymer foam with use of hydrogel pearls as porosity generating template, comprising the steps of:—providing a matrix of polymer or prepolymer in viscous state including, as a dispersed phase, hydrogel pearls, where said pearls are dispersed in said matrix so as to generate intercommunicating cells,—causing the solidification of the matrix of polymer or prepolymer to obtain said polymer foam including said hydrogel pearls, characterised in that it comprises the operation of subjecting the thus obtained foam to conditions which cause the dehydration of said hydrogel pearls so as to obtain a reduction of volume of said pearls and—removing the dehydrated pearls by immersion in water of the polymer foam or by exposure of the foam to a flow of pressurized gas or water.
Abstract:
Technologies and implementations for providing melt processable poly(vinyl alcohol) blends and poly(vinyl alcohol) based membranes are generally disclosed.
Abstract:
Provided is a porous epoxy resin sheet produced by cutting a cured epoxy resin body to a predetermined thickness, the porous epoxy resin sheet having a large surface area and a uniform in-plane pore size distribution. A method for producing a porous epoxy resin sheet, comprising forming a cylindrical or columnar cured resin body from a resin mixture containing an epoxy resin, a curing agent, and a porogen, cutting the surface of the cured resin body at a predetermined thickness to make an epoxy resin sheet, and then removing the porogen from the sheet to render the sheet porous, wherein when the cured resin body is formed from the resin mixture, curing is performed in a state where the viscosity of the mixture is at least 1,000 mPa·s.
Abstract:
Technologies and implementations for providing melt processable poly(vinyl alcohol) blends and poly(vinyl alcohol) based membranes are generally disclosed.
Abstract:
A method of producing a porous biodegradable medical implant device, the method comprising providing a mixed blend comprising a mixture of at least two biocompatible materials having different degradation or solubility characteristics; molding the mixed blend to produce a molded part; and processing the molded part to remove one of the at least two biocompatible materials by a predetermined amount from the molded part to produce the porous biodegradable medical implant device.
Abstract:
A new conductive interconnected porous film, useful as a material for a gas diffusion layer which is used in a solid polymer type fuel cell, which satisfies the requirements of a good conductivity, good gas permeability, surface smoothness, corrosion resistance, and low impurities and which is strong in bending and excellent in handling to an extent not obtainable by existing sheet materials of carbon fiber, that is, a conductive interconnected porous film wherein a resin base material part of a thermoplastic resin has a porous interconnected cell structure which is formed by removal of removable particulate matter and has cells of sizes of 10 μm to 50 μm and wherein the resin base material part is comprised of different particle size particles of first carbon particles of large size carbon particles of a diameter of 5 μm or more and second carbon particles of micro size carbon particles of a diameter of 10 nm or more mixed together, and a method of production of the same.
Abstract:
Provided are: a polyetherimide porous body which has a low relative permittivity and is not easily cracked (or is excellent in cracking resistance) when folded, and a method for producing the porous body. This polyetherimide porous body comprises a polyetherimide crosslinked body and has a gel fraction of 10% or more, an average cell diameter of 8 μm or less, a volume porosity of 30% or more and an insulation breakdown voltage of 30 kV/mm or more.
Abstract:
Provided are porogen compositions and methods of using such porogen compositions in the manufacture of porous materials, for example, porous silicone elastomers. The porogens generally include comprising a core material and shell material different from the core material. The porogens can be used to form a scaffold for making a resulting porous elastomer when the scaffold is removed.
Abstract:
Disclosed is a process for production of a porous membrane that includes the steps of layering a film-forming dope that contains a polymer (A) that forms a membrane base, a polyvinylpyrrolidone (B) and a solvent (C) into a single layer or two or more layers; immersing the film-forming dope in a solidifying fluid that is a non-solvent with respect to the polymer (A) and is a good solvent with respect to the polyvinylpyrrolidone (B); and removing the polyvinylpyrrolidone (B), wherein the polyvinylpyrrolidone (B) has a K value of 50 to 80, a mass ratio r of the polyvinylpyrrolidone (B) to the polymer (A) is 0.5 or more and less than 1, and the viscosity of the film-forming dope at a membrane production temperature is 100 to 500 Pa·s. Accordingly, by using an appropriate amount of a low-molecular-weight hydrophilic polymer capable of being easily removed, it is possible to produce a porous membrane of a three-dimensional network structure in which macrovoids are suppressed, having high water permeability and superior filtration performance.