Abstract:
The present invention relates to a method of determining petroleum hydrocarbon fractions (Cn) in a sample, the method including: inputting the sample into a chamber; emitting infrared light from an optical light source into the chamber with the sample; detecting at a detector a detected infrared light from the chamber; transforming the detected infrared light to a Fourier Transform Infrared (FTIR) spectrum of the sample at a processor, wherein the FTIR spectrum has wavenumbers between 4000 and 400 cm−1; processing the FTIR spectrum to identify sub-bands each having at least one doublet of sub-band peaks at respective wavenumbers in a second derivative curve of the FTIR spectrum using a second derivation algorithm implemented by the processor; comparing the at least one doublet of sub-band peaks to data indicative of known doublets of sub-band peaks at known wavenumbers for petroleum hydrocarbon fractions in the FTIR spectrum to classify the petroleum hydrocarbon fractions in the sample; and determining a dominant petroleum hydrocarbon fraction of the petroleum hydrocarbon fractions in the sample based on a ratio of intensities of the sub-band peaks of the at least one doublet for each of the petroleum hydrocarbon fractions in the sample.
Abstract:
A time measuring apparatus 10 includes a digital counter 20 that outputs a count signal in response to a clock signal, a plurality of TAC circuits 12 (TAC circuits 12a to 12j) to which a detection signal detected by a detector 4 and a clock signal are input and which output measurement signals corresponding to a time between the detection signal and the clock signal, a control unit 14 that derives and outputs time information related to the detection signal based on the count signal output from the digital counter 20 and the measurement signals output from the TAC circuits 12, and a measurement gate 11 that switches between the TAC circuits 12 to which the detection signal is input, in consideration of dead times of the TAC circuits 12.
Abstract:
A detection system for detecting fluorescence lifetime includes an excitation light source configured for repeatedly generating pulsed excitation light, and a detector. The detector has a single-photon detection circuit; a pulse-inhibit circuit for rejecting detected photons that occur outside each one of a series of measurement time windows, each subsequent measurement time window starting after a subsequent excitation light pulse has stopped, and stopping before a next excitation light pulse is generated, each measurement time window having a measurement window period; and a switched-capacitor circuit having an input terminal for receiving a voltage ramp signal that is restarted with each new measurement window period. The switched-capacitor circuit is configured for repetitively computing an average voltage. The switched-capacitor circuit has a node for outputting the computed average voltage as a measure of the fluorescence lifetime.
Abstract:
A threat detection system having a reconfigurable reflect-array and compressive sensing unit to effectively detect objects that are a threat is presented. A statistical library, having a wide range of threat and non-threat examples and capable of incorporating new examples while being used, is utilized by several optimization algorithms to calculate an optimal illumination pattern for compressive sensing detection. The reflect-array is configured to produce the optimal illumination pattern via a plurality of reflect-array elements. In this way, a plurality of data may be parallel processed, thereby increasing the detection speed and reducing cost.
Abstract:
Provided are an apparatus and method for measuring contamination of a filter. The filter contamination measuring apparatus includes a light-emitting unit which provides light having, a predetermined wavelength to a filter adsorbs foreign materials, a light-receiving unit which receives light reflected by the filter and convert reflected light information into a digital code to output, and a contamination calculating unit which processes the digital code provided by the light-receiving unit and calculates a degree of contamination of the filter, wherein the contamination calculating unit calculates a degree, in which a wavelength of the light reflected by the filter is shifted from the predetermined wavelength, compares intensity of light provided by the light-emitting unit with intensity of the light reflected by the filter, and calculates the degree of contamination of the filter.
Abstract:
Provided are an apparatus and method for measuring contamination of a filter. The filter contamination measuring apparatus includes a light-emitting unit which provides light having, a predetermined wavelength to a filter adsorbs foreign materials, a light-receiving unit which receives light reflected by the filter and convert reflected light information into a digital code to output, and a contamination calculating unit which processes the digital code provided by the light-receiving unit and calculates a degree of contamination of the filter, wherein the contamination calculating unit calculates a degree, in which a wavelength of the light reflected by the filter is shifted from the predetermined wavelength, compares intensity of light provided by the light-emitting unit with intensity of the light reflected by the filter, and calculates the degree of contamination of the filter.
Abstract:
A solid state detection system includes a degenerate photo-parametric amplifier (PPA), wherein the PPA comprises a photo diode, and a periodically pulsed light source, wherein the photo-parametric amplifier (PPA) is synchronized to the pulsed light source with a phase locked loop that generates a pump waveform for the PPA at twice the frequency of the excitation pulse rate.
Abstract:
A solid state detection system includes a degenerate photo-parametric amplifier (PPA), wherein the PPA comprises a photo diode, and a periodically pulsed light source, wherein the photo-parametric amplifier (PPA) is synchronized to the pulsed light source with a phase locked loop that generates a pump waveform for the PPA at twice the frequency of the excitation pulse rate.
Abstract:
A flexible gas sensor includes a housing with a predetermined form factor, a photoacoustic gas sensing chamber, and at least one of acoustic, temperature, relative humidity or pressure sensors in combination with processing circuitry which can emulate the characteristic gas response output of a catalytic bead pellistor-type gas sensor in response to a selected gas. The processing circuitry can include a programmable processor and a storage unit. The storage unit can be loaded with data and executable instructions to specify, at least in part, how the signals from the photoacoustic sensor are to be processed by the processing circuitry.