Abstract:
Apparatus for orientating a user in a space wherein the space comprises a plurality of zones of which only certain zones constitute functional zones wherein each functional zone includes a first type device containing information relating to the position of the zone in the space and wherein the first type device is reactive to the presence of a second type device associated with the user to provide the user with the information to determine the orientation of the user in the space. A method of orientating the user within the space and guiding the user toward one or more features in the space is also disclosed.
Abstract:
This document discusses, among other things, target, e.g., a vehicle, detection methods and systems that can identify, track, and positionally locate the vehicle using passive sensing of stray signals emitted by a target. The detector can be handheld, in an example, with computing devices, interchangeable antenna units, and a display. The antenna can offer desired gain at specific frequencies of interest. The computing devices can determine the location of the target, e.g., vehicle, aircraft, to within one degree of accuracy. The display can provide this data to a user. In an example, the detector can be a standalone device. In an example, the detector is part of a system that includes a server that can receive data from a plurality of detectors and transmit instructions to the detectors.
Abstract:
Repeated data packets are generated from a first Bluetooth enabled device to a second Bluetooth enabled device to facilitate radio direction finding of the first device by the second device. A communication connection is established between the first and second devices in accordance with a Bluetooth protocol stack and in response to receiving at the second device a data packet transmitted by the first device the second device transmits an NACK data packet to the first device, whereby the first device is cause to retransmit said data packet, and causing the second device to process at least one of the transmitted data packet and the retransmitted data packet in accordance with a radio direction finding algorithm. The communication connection preferably comprises a remote name request.
Abstract:
Methods and apparatus are provided for determining a Direction of Arrival (DOA) of a remote unit (22) in a communication system (20). The apparatus includes a first antenna (32) and a second antenna (36) configured to receive an RF signal (32) having a plurality of scattered rays produced by multi-path scattering. A ray selector (114) of the apparatus is configured to identify a first ray and second ray from the scattered plurality of rays received at the first antenna (32) and the second antenna (36). A difference calculator (116) is configured to determine an amplitude difference (120) and a phase difference (122) between the first ray and said second ray, and an angle estimator (118) is configured to calculate a plurality of DOA values (142) based upon the phase difference (122) and select one of the plurality of DOA values (142) utilizing the amplitude difference (120).
Abstract:
A direction-finding antenna constructed from polymer composite materials which are electrically conductive is shown with the polymer composite materials replacing traditional metal materials. An inherent advantage of replacing metal materials is significantly lower radar reflectivity (radar cross section) and lower weight. The reduced radar reflectivity reduces the range of detectability of the antenna by possible adversaries. Despite significantly lower radar reflectivity, the antenna assembly has direction-finding characteristics which are essentially equivalent to traditional metal antennas.
Abstract:
This disclosure relates to multi-element antenna clusters or arrays for the reception and transmission of radio waves for direction-finding, navigation aid and emitter and/or receiver location purposes. In particular, it relates to arrangements of multiple antennas whereby the direction of propagation (arrival or departure) of a wavefront is determined from a combination of the amplitudes of phasor (or total individual antenna output) differences between pairs of antennas, said arrangements being along certain geometrical patterns, such as a circle, an ellipse, a polygon, an open straight line, etc., with at least one longest dimension measuring more than one wavelength of the incident or departing wave. Although described in terms of electromagnetic waves and hence antennas as receiving sensors or radiators, this invention is reality applies to any other form of propagating waveborne energy, such as acoustic, ultrasonic, seismic, etc.
Abstract:
An adaptive signal processing system for enhancing the signal-to-interfere characteristics on both receive and transmit, using an in-phase quadrature correlator to control phase and amplitude adjust circuits located in the antenna signal paths. To increase the dynamic range, automatic gain control circuits are included in the reference and feedback signal paths to the correlator.
Abstract:
According to examples of the presently disclosed subject matter, there is provided a system for estimating a source location of a projectile, comprising an optics an optics subsystem, a radar subsystem and a processor. The processor is adapted to use range and velocity measurements obtained from data provided by the radar subsystem, a source direction and an event start time obtained from data provided by the optical subsystem and a predefined kinematic model for the projectile for estimating a range to a source location of the projectile.