Abstract:
A device that includes a multi-segment ring modulator is provided. In particular, the device comprises: an optical waveguide; an optical ring modulator optically coupled to the optical waveguide; a first voltage control device along a first segment of the optical ring modulator; a second voltage control device along a second segment of the optical ring modulator; a first driver device configured to control the first voltage control device to a first voltage and a second voltage; and, a second driver device configured to control the second voltage control device to a third voltage and a fourth voltage. In particular implementations, a ratio of a length of the first segment to a length of the second segment can be one or more of about 2:1 and greater than 1:1, and non-linear driver devices can be used.
Abstract:
A substantially planar waveguide for controlling the out-of-plane angle at which a light beam exits the waveguide. Generally, liquid crystal materials may be disposed within a waveguide in a cladding proximate or adjacent to a core layer of the waveguide. In one example, the waveguide may contain one or more taper regions such that the light beam exits the waveguide and propagates out-of-the-plane of the waveguide into an out-coupling medium at a propagation angle. In one example, the waveguide may contain one or more electrodes onto which one or more voltages may be applied. The magnitude of the propagation angle may be electronically controlled by altered by controlling or altering the magnitude of the one or more applied voltages.
Abstract:
A device that includes a multi-segment ring modulator is provided. In particular, the device comprises: an optical waveguide; an optical ring modulator optically coupled to the optical waveguide; a first voltage control device along a first segment of the optical ring modulator; a second voltage control device along a second segment of the optical ring modulator; a first driver device configured to control the first voltage control device to a first voltage and a second voltage; and, a second driver device configured to control the second voltage control device to a third voltage and a fourth voltage. In particular implementations, a ratio of a length of the first segment to a length of the second segment can be one or more of about 2:1 and greater than 1:1, and non-linear driver devices can be used.
Abstract:
A coupler/splitter including two neighboring coplanar waveguide portions extending in a same direction, the first portion having a constant cross-section, the second portion having a variable cross-section so that the effective index of the second waveguide portion varies, in the upstream-to-downstream direction, from a first lower value to a second value higher than the effective index of the first portion, in adiabatic coupling conditions.
Abstract:
An optical waveguide device having a Mach-Zehnder type waveguide formed on a substrate is provided in which a slope of two waveguides input to an optical coupler on an output side of the Mach-Zehnder type waveguide is 0 degrees, a waveguide of the optical coupler after being coupled by the optical coupler is a multi-mode waveguide, and the waveguide which is output from the optical coupler is a three-branched waveguide including an output main waveguide and two output sub waveguides interposing the output main waveguide therebetween.
Abstract:
An electro-optical device for processing an optical signal, comprises an electrode that is arranged and designed so that the optical signal at least partially intrudes the electrode when the optical signal is processed in the electro-optical device. An insulator is arranged adjacent to the electrode so that one face of the electrode contacts the insulator. A gate is arranged so that a voltage is applicable between the electrode and the gate such that a charge layer is induced on the face of the electrode that is contacting the insulator.
Abstract:
Disclosed is an optical delay element that makes use of a line-defect waveguide of a photonic crystal, in which long optical delay time and small group speed dispersion are rendered compatible with each other and in which waveform distortion that might otherwise be produced in processing an ultra-high speed signal is eliminated. Two line-defect waveguides 5 and 11, having different pillar diameters and group velocity dispersions of opposite signs, are interconnected by a line-defect waveguide 8, the pillar diameters of which are gradually varied from one 5 of the line-defect waveguides to the other line-defect waveguide 11, such as to compensate for group speed dispersion as well as to maintain an optical delay effect.
Abstract:
A tunable optical signal device and method of using the same having at least two filter elements, each of said filter elements being made of a material having an adjustable parameter, wherein the adjustable parameter is maintained at slightly different values for adjacent filter elements.
Abstract:
A display device has an insulated basic substrate. A plurality of light waveguides are arranged on the basic substrate in parallel to each other. A plurality of signal wires is arranged in parallel and in a manner to be crossed with the light waveguides, respectively. A plurality of photoconductive layers three-dimensionally are laid between the light waveguides and the signal wires and directly connected with each light guiding portion of the light waveguides at respective crosspoints between the light waveguides and the signal electrodes. A plurality of pixel electrodes provided are to be connected with the photoconductive layers, respectively. An insulated opposed substrate located in opposition to the basic substrate with a display medium therebetween and having an opposed electrode on the surface opposed to the basic substrate. And the relation among an index of refraction n.sub.1 of the light guiding portion, an index of refraction n.sub.2 of the photoconductive layer, and an angle of incidence .theta. of light given from the light guiding portion to the photoconductive layer meeting the following expression ofn.sub.1 sin .theta.
Abstract:
A thermo-optic phase shifter includes a substrate having a cavity formed into an upper region of the substrate. The thermo-optic phase shifter includes an optical waveguide disposed above the substrate. The optical waveguide extends across and above the cavity. The thermo-optic phase shifter also includes a heater device disposed along a lateral side of the optical waveguide. The heater device extends across and above the cavity. The cavity is formed by an undercut etching process after the optical waveguide and the heater device is formed. The optical waveguide can be formed to include one or more segments that pass over the cavity. Also, a second heater device can be included such that the one or more segments of the optical waveguide that extend over the cavity are bracketed by heater devices. Thermal transmission structures can be included to enhance heat transfer between the heater device(s) and the optical waveguide.