Abstract:
A low-noise amplifier is provided that includes an input amplifier stage coupled to a plurality of independently switchable output amplifier stages. The input amplifier stage is operative to amplify an input communications signal, and it provides both an amplified communications signal and a feedforward signal. The amplified communications signal and the feedforward signal both include a distortion component. Each of the switchable output stages is operative to provide an output that combines the feedforward signal with the amplified communications signal in such a way that the distortion components of the signals at least partially cancel one another. In some embodiments, the switching of the output amplifier stages is performed by circuitry that also serves to improve reverse isolation of the separate output amplifier stages.
Abstract:
The invention relates to a method and circuit for linearizing amplifiers and other nonlinear circuits for multi-carrier signals. An output signal from the amplifier is sampled, and a correlation matrix of size N×N is computed from the sampled signal, wherein N exceeds the number of multiplexed carriers in the signal. A signal-to-distortion ratio (SDR) is then estimated based on a ratio of one or more largest to one or more smallest eigenvalues of the correlation matrix, and the signal into the amplifier is pre-distorted so as to maximize the SDR.
Abstract:
Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
Abstract:
Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
Abstract:
Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
Abstract:
The invention relates to a method and circuit for linearizing amplifiers and other nonlinear circuits for multi-carrier signals. An output signal from the amplifier is sampled, and a correlation matrix of size N×N is computed from the sampled signal, wherein N exceeds the number of multiplexed carriers in the signal. A signal-to-distortion ratio (SDR) is then estimated based on a ratio of one or more largest to one or more smallest eigenvalues of the correlation matrix, and the signal into the amplifier is pre-distorted so as to maximize the SDR.
Abstract:
Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
Abstract:
Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
Abstract:
Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.
Abstract:
Methods and systems for vector combining power amplification are disclosed herein. In one embodiment, a plurality of signals are individually amplified, then summed to form a desired time-varying complex envelope signal. Phase and/or frequency characteristics of one or more of the signals are controlled to provide the desired phase, frequency, and/or amplitude characteristics of the desired time-varying complex envelope signal. In another embodiment, a time-varying complex envelope signal is decomposed into a plurality of constant envelope constituent signals. The constituent signals are amplified equally or substantially equally, and then summed to construct an amplified version of the original time-varying envelope signal. Embodiments also perform frequency up-conversion.