Abstract:
Rotational moulding process for polymerizing or copolmerizing ethylene for manufacturing ethylene polymers or copolymers having a controlled particle size and morphology. Ethylene is polymerized or copolymerized under ethylene polymerizing conditions in the presence of a supported metallocene catalyst, where the average particle size of the catalyst particles is selected within the range of 14-40 nullm and the residence time at the polymerization is selected so as to achieve a polymer where average particle size is between 0.2-0.5 mm and the proportion of fractions between 0.1-0.6 is at least 80%.
Abstract:
An organometallic composition which can be used as activating component in a metallocene catalyst for the (co)polymerization of null-olefins, comprises: (A) a fluorinated di-unsaturated cyclic compound, having a relatively acid hydrogen atom, (B) an organometallic compound sufficiently basic to react with the acid hydrogen of the above compound (A), and (C) a polar aprotic organic compound, not containing metallic atoms, having a dielectric constant, in the pure state, equal to or greater than 2, and a weak coordinating capacity. Said composition allows a metallocene catalytic system of the ionic type to be obtained, with a high activity in the (co)polymerization of olefins and a reduced content of metallic residue in the polymeric product thus obtained.
Abstract:
Processes of producing fluorided catalyst compounds and process of producing polyolefins using these catalyst compounds are disclosed. An embodiment of the process includes contacting a nitrogenous metallocene compound with a fluoriding agent, which preferably includes a fluorided anhydrous acid, for a time sufficient to form a fluorided metallocene catalyst compound. An example of the process to produce a fluorided metallocene is: 1 wherein N is nitrogen, R and Rnull are groups selected from hydrogen, hydrocarbons, heteroatom-containing hydrocarbons and halides, p can be 0 (if no substituent groups are present on the Cp rings) or an integer from 1 to 5; adjacent R groups can form another ring system (e.g., to form a tetrahydroindenyl or indenyl group); and the other groups are defined as herein; wherein nullEq.null are the equivalents of fluoriding agent combined with the nitrogenous metallocene compound ranging from 1 to 10 in one embodiment.
Abstract:
The present invention relates to a process for preparing homopolymers, copolymers and/or block copolymers of 1-olefins by living polymerization, to the use of the homopolymers, copolymers and/or block copolymers obtained for producing high-value materials and to the polymers formed from these homopolymers and/or block copolymers.
Abstract:
The present invention relates to compounds in which a transition metal is complexed by at least two ligand systems and at least two of the systems are reversibly joined to one another by at least one bridge comprising a donor and an acceptor, wherein at least one fluorenyl ligand is present and at least one substituent on the acceptor group is an alkyl or aryl radical. The invention further relates to the use of these compounds having a donor-acceptor interaction as polymerization catalysts for preparing high molecular weight elastomers.
Abstract:
Novel metal complexes, particularly chromium complexes, which contain at least one tridentate ligand are disclosed and prepared. Olefins, particularly ethylene, can be reacted to form butene and/or other homo- or co-oligomers and/or polymers with high null-olefin concentrations by contacting a metal catalyst which contains a transition metal, particularly chromium, complexes having per metal atom at least one tridentate ligand with N, O, or N and O coordinating sites.
Abstract:
Blends of two or more polyethylenes are made by reacting ethylene with an oligomerization catalyst that forms null-olefins, and two polymerization catalysts, one of which under the process conditions copolymerizes ethylene and null-olefins, and the other of which under process conditions does not readily copolymerize ethylene and null-olefins. The blends may have improved physical properties and/or processing characteristics.
Abstract:
A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprisingnullCP* MRRnullnnullnullnullAnullnullwherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C1-C20 hydrocarbyl; Rnull are independently selected from hydride, C1-C20 hydrocarbyl, SiRnull3, NRnull2, ORnull, SRnull, GeRnull3, SnRnull3, and CnullC groups (RnullnullC1-C10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.
Abstract:
Disclosed are metallocene complexes containing two or more metallocene components where the components may be independently bridged or unbridged. In particular, the invention provides metallocene complexes including a bridged metallocene component linked to an unbridged metallocene component where a ligand structure of the unbridged metallocene component is linked to the bridging group of the bridged metallocene component. The invention provides metallocene complexes including a first unbridged metallocene component linked to second unbridged metallocene component via their ligand structures. The invention also provides metallocene complexes including a bridged metallocene component linked to a second bridged metallocene component via their ligand structures. The invention further provides methods of preparing the linked metallocene complexes described above, catalyst systems including these linked metallocene complexes, polymerization processes utilizing these complexes, and polymers made thereby.
Abstract:
The present invention relates to a process for the polymerization of monomers utilizing a bulky ligand hafnium transition metal metallocene-type catalyst compound, to the catalyst compound itself and to the catalyst compound in combination with an activator. The invention is also directed to an ethylene copolymer composition produced by using the bulky ligand hafnium metallocene-type catalyst of the invention, in particular a single reactor polymerization process.