Abstract:
A process for converting an olefinic gasoline to a higher octane value gasoline comprises the steps of subjecting the feed gasoline, or a fraction thereof, to olefin disproportionation in the presence of added ethylene to convert some of the heavier olefins to lighter olefins, disproportionating propylene produced by the first step to ethylene and butenes, alkylating the butenes with isobutane, catalytically reforming a C5+ fraction from the first step, and recombining the alkylate and reformate with unconverted gasoline fractions to form the higher octane gasoline.
Abstract:
The invention relates to a process for the production of C6-C7 aromatic compounds from a hydrocarbon feedstock of naphtha type comprising a step of fractionating (2) the feedstock in order to obtain an upper stream and a lower stream, a step of catalytic reforming of the upper stream (6) and of the lower stream (9), a step of recombining (15) the reformate effluents obtained, a step of recontacting (16) and a step of stabilizing (19) the stabilized reformate effluents and a step of separating (22) the raffinate in order to recover C6 and C7 hydrocarbon compounds.
Abstract:
A naphtha reforming reactor system comprising a first reactor comprising a first inlet and a first outlet, wherein the first reactor is configured to operate as an adiabatic reactor, and wherein the first reactor comprises a first naphtha reforming catalyst; and a second reactor comprising a second inlet and a second outlet, wherein the second inlet is in fluid communication with the first outlet of the first reactor, wherein the second reactor is configured to operate as an isothermal reactor, and wherein the second reactor comprises a plurality of tubes disposed within a reactor furnace, a heat source configured to heat the interior of the reactor furnace; and a second naphtha reforming catalyst disposed within the plurality of tubes, wherein the first naphtha reforming catalyst and the second naphtha reforming catalyst are the same or different.
Abstract:
An apparatus and a method are used for investigating the naphtha reforming process in catalyst test devices with reactors arranged in parallel. The apparatus has a plurality of reactors arranged in parallel with reaction chambers (R1, R2, . . . ), a product fluid supply, a process control, and at least one analysis unit. Each individual reactor has an outlet line for the product fluid stream, wherein the analysis unit is operatively connected to each outlet line for the product fluid stream and the apparatus is functionally connected to the control of the apparatus. In carrying out the method, naphtha-containing reactant fluid streams are brought into contact with catalysts in the individual reactors and the product fluid streams are subsequently supplied to the online analysis unit from the respective outlet lines of the individual reactors and analyzed. Using the evaluation of the online analytical characterization data, the process parameters of the respective reactor unit are adapted. The process steps of analytical characterization, evaluation, and adaptation of process parameters are repeated for the duration of the investigation.
Abstract:
A process is presented for the increasing the yields of aromatics from reforming a hydrocarbon feedstream. The process includes splitting a naphtha feedstream into a light hydrocarbon stream, and a heavier stream having a relatively rich concentration of naphthenes. The heavy stream is reformed to convert the naphthenes to aromatics and the resulting product stream is further reformed with the light hydrocarbon stream to increase the aromatics yields. The catalyst is passed through the reactors in a sequential manner.
Abstract:
One exemplary embodiment can include an aromatic production apparatus. The aromatic production apparatus can include a first fractionation zone, a second fractionation zone, and a third fractionation zone. Generally, the first fractionation zone can provide a stream rich in an aromatic C8− and a stream rich in an aromatic C9, the second fractionation zone can separate at least one of benzene and optionally toluene from a transalkylation zone effluent and provide a feed to the first fractionation zone, and the third fractionation zone can receive the stream rich in the aromatic C8− from the first fractionation zone. An effluent from the third fractionation zone can be directly comprised in a para-xylene-separation zone feed to a para-xylene-separation zone.
Abstract:
A full boiling hydrocarbon feed is reformed to enhance para-xylene and benzene yields. First, the hydrocarbon feed is separated into a C.sub.5- cut, a C.sub.6 -C.sub.7 cut, and a C.sub.8+ cut. The C.sub.6 -C.sub.7 cut has less than 5 lv. % of C.sub.8+ hydrocarbon, and the C.sub.8+ cut has less than 10 lv. % of C.sub.7- hydrocarbon. The C.sub.6 -C.sub.7 cut is subjected to catalytic aromatization at elevated temperatures in a first reformer in the presence of hydrogen and using a non-acidic catalyst comprising at least one Group VIII metal and a non-acidic zeolite support to produce a first reformate stream; and the C.sub.8+ cut is subjected to catalytic aromatization at elevated temperatures in a second reformer in the presence of hydrogen and using an acidic catalyst comprising at least one Group VIII metal and a metallic oxide support to produce a second reformate stream. Less than 20 wt. % of the total amount of C.sub.8 aromatics produced in the first and second reformer is ethylbenzene, and more than 20 wt. % of the total amount of xylenes produced in the first and second reformer are para-xylenes.
Abstract:
A process combination is disclosed to selectively upgrade naphtha to obtain gasoline which is in accordance with current standards for reformulated fuels. A naphtha feedstock is fractionated to selectively direct light naphtha to isomerization or blending, a head-cut fraction to reforming, and a heavy potion to selective isoparaffin synthesis to yield light and heavy synthesis naphtha and isobutane. The heavy potion of the synthesis naphtha is processed by reforming. Light naphtha may be isomerized, with or without recycle of low-octane components of the product. A gasoline component is blended from light, synthesis, and reformate products from the process combination.
Abstract:
A process for reforming a hydrocarbon fraction having a limited proportion of C.sub.9 + hydrocarbons. A hydrocarbon fraction is separated into a light fraction and a heavy fraction, the light fraction containing less than 10% by volume of C.sub.9 + hydrocarbon. The light fraction is reformed in the presence of a monofunctional catalyst, and the heavy fraction is reformed in the presence of a bifunctional catalyst.