摘要:
The meter forms part of a heating system supplied with thermal energy in the form of hot water from a heat generator, and serves to determine the amount of heat supplied to a consumer, for the purpose of appropriately charging the consumer for incurred heating costs. The meter includes a computer, operating on the analog principle, a volumeter and connection elements for connection to signal processing devices. The volumeter is formed by a first tubular body through which the hot water flows to the consumer, and this first tubular body is surrounded coaxially, at a definite radial spacing therefrom, by a second tubular body so that the two tubular bodies define a completely closed annular space. The cooled hot water returns through a return line. The supplied hot water in the first tubular body constitutes a primary medium flowing therethrough, and the completely closed annular space receives a secondary medium which is heated by the primary medium. A temperature sensor and a pressure head probe are operatively connected to the first tubular body, a second temperature sensor is operatively connected to the return line, and electronic elements convert the pressure head into an electrical quantity proportional to the volume of the primary medium flowing through the first tubular body. The temperature sensors serve to determine the heat amount. A thermogenerator is connected in communication with the completely closed annular space, for generation of electric energy by the heat of the secondary medium, and an electronic transformer is connected to the thermogenerator to convert the generated electric energy into operating potentials applied to the computer and to the volumeter.
摘要:
In the hot water heating system disclosed herein, a sensing means such as a thermistor provides a first electrical control signal which represents deviation of outlet water temperature from preselected value and a flowmeter provides a pulsating electrical signal having a frequency which varies as a function of rate of flow through the heating system. An output signal is generated having a frequency equal to that of the pulsating signal and a squarewave pulse duration which varies as a function of the first control signal. Heater means are then energized by the output signal so as to provide a thermal input to the heating system which is substantially proportional to the product of water output temperature deviation and flow rate. This control minimizes output temperature fluctuations due to thermal inertia and heater lag.
摘要:
A device for local temperature measurement that is suitable for taking temperature measurements of an immediate vicinity of said device. The device comprises: a cell comprising a heat-conductive base and at least one first material having a predetermined fixed state-change temperature and arranged in said base; a heat-energy transfer device thermally connected to said base and said at least one first material; a local temperature measurement probe received in said base and in thermal contact with said at least one first material, the heat-energy transfer device being suitable for causing a change of state of said first material in order to carry out at least one metrological verification of the local temperature measurement probe. An associated cell and method for use are also provided.
摘要:
Temperature compensation for ultrasonic sensors can have a significant error that is highly undesirable because temperature of ultrasonic sensors and the temperature of the medium through which they sense objects affect signal strength calibrations (e.g., echo thresholds) applied when detecting an object. In order to increase the detection capabilities and reported distance of an object, ultrasonic sensors need to adjust their detection criteria and distance calculations as the temperature of air surrounding a vehicle (i.e., outside air temperature) changes and also as the temperature of the sensor changes. Embodiments of the inventive subject matter provide for a simple, effective and consistent approach for determining a temperature upon which such detection criteria and distance calculation adjustments can be based.
摘要:
A heat circuit comprises an initial conduit containing a flow medium and a return conduit. A choke element located in a conduit such as the initial conduit of a heat circuit serves to control the flow of the flow medium. The choke element has several active positions in which openings having differently sized cross-sections are inserted into the path of flow. The choke element is moved by a drive so that a particular position of the choke is active. A differential pressure sensor measures the presure difference before and after the choke element. A computer resposive to the differential pressure sensor controls the drive so that a particular cross-section of the choke element takes effect and the flow of the medium is measured with sufficient precision over a wide measuring range. The inventive arrangement may also include a temperature sensor for measuring the temperature difference between the initial and return conduits. The computer which controls the choke drive may also be responsive to this temperature difference.
摘要:
The disclosed apparatus includes a heat meter and a flow meter. The heat meter includes means for delivering trains of pulses to a heat register, the pulses per train being proportional to the temperature difference between fluid inlet and outlet passages of heat exchange means, and the recurrence rate of the pulse trains being determined by a flow sensor. A visual indicator of the pulse trains facilitates zero-difference adjustment of the temperature sensors when they are both at the same temperature. Compensation for variations in the specific heat of the fluid and temperature-related inaccuracy of the flow sensor is effected by non-linear frequency adjustment of an oscillator that generates the pulses. In a flow meter (omitting the temperature-difference circuit) compensation for temperature-related inaccuracy of flow-sensors is effected correspondingly.
摘要:
The temperatures at the inlet and the outlet of a solar energy collector being flown through by water are detected and compared with a ramp signal to provide a pulse train in which the number of pulses represents the temperature differential. The ramp signal is produced at a repetition rate representing the water flow rate so that the tallied pulses represent the BTU's as absorbed by the collector.
摘要:
Apparatus for registering quantity values of corresponding volume or energy quantitites measured at consumption points at a distance from a central station which has a number of counters corresponding to the various consumption points. Each time a predetermined volume or energy quantity has been measured, the corresponding signal transmitter is activated. A signal is then relayed from the transmitter back to the central station where it is initially stored in a shift register device having a length equal to the number of transmitters coupled to the central station. Each of the transmitters is coupled to a distributing device which selectively samples and couples each of the transmitters to the central station as they are activated. Output signals from the shift register device emerge therefrom in synchronism with a subsequent activation of the transmitter to which they correspond. The output signals are then coupled through a switch device to the corresponding counters.
摘要:
An integrating flow calorimeter for measuring and indicating the cumulative heat exchanged between a load equipment and a heat-conveying liquid circulating therethrough.A flow measuring device continuously measures the quantity of liquid circulated through the load equipment, and closes a switch for a predetermined fixed interval of time each time a predetermined quantity of the liquid has been supplied to the load equipment. The switch connects a differential temperature measuring device to an electrical power source, which can be a battery mounted integral with the meter.The differential temperature measuring device includes temperature sensors which sense the temperatures of the liquid supplied to, and exhausted from the load equipment. During the time the differential temperature measuring device is energized, the difference between the supply and exhaust liquid temperatures is converted into a pulsed output signal, in which the frequency of the pulses is directly proportional to the sensed differential temperature of the liquid.The pulsed output signals are transmitted to a counting device, which counts the number of pulses therein, and operates an indicating register which indicates the total quantity of heat supplied to the load equipment.The meter can also include a regulating device for adjusting the fixed time interval during which the switch is closed, to thereby compensate for manufacturing error in the flow measuring device.Also, the temperature sensors can be p-n juncture semiconductor devices, which are easily installed in existing liquid lines.