Abstract:
An atomic force microscopy (AFM) probe and a method of manufacturing mounted probes for AFM applications. The method implements an optimized soldering procedure for mounting a probe to a holder chip. In one embodiment, a metallisation system of Ti:W+Ni+Au is applied with a SnBi58 solder paste in combination with a hotplate. The mechanical connection between the probe and holder chip is preferably rigid. The soldered probe is highly conductive and the probe-holder chip assembly shows clear resonance peaks in tapping mode AFM.
Abstract translation:原子力显微镜(AFM)探针和制造用于AFM应用的安装探针的方法。 该方法实现了将探头安装到保持器芯片的优化焊接程序。 在一个实施例中,Ti:W + Ni + Au的金属化系统与SnBi58焊锡膏一起加热。 探针和保持器芯片之间的机械连接优选是刚性的。 焊接的探头是高导电性的,并且探头支架芯片组件在攻丝模式AFM中显示清晰的共振峰值。
Abstract:
An instrument system is controlled to acquire an optical image of an object, with the optical image defining a first coordinate system. The object is positioned in a second coordinate system and a point in the optical image is selected. The object is repositioned so that a point on the object corresponding to the selected point in the optical image is positioned at a predetermined point in the second coordinate system. Alternatively, movement of the object causes an indicia on the optical image to move to a point thereon corresponding to the point on the object that is positioned at the predetermined point in the second coordinate system.
Abstract:
A method for predicting hydrocarbon-bearing zones and estimating rock properties by analyzing fluids trapped in the pore spaces or adsorbed on the surfaces of rock samples. The trapped gases are removed under vacuum and analyzed by a mass spectrometer. Data peaks corresponding to petroleum constituent molecules provide an indication of presence and abundance of hydrocarbons. A decrease of the count rate over time is used to estimate permeability and other rock properties. Concentration ratios for selected constituents indicate oil quality and depth of the oil-water contact.
Abstract:
A system and method provide three-dimensional real time stabilization of the gap between probe tip and sample in a scanning probe microscope (SPM) against creep and drift. Supplemental signals in each axis provide supplemental movement to the probe tip to offset drift. The supplemental signals can be applied simultaneously or sequentially in any combination of axes. Typically the supplemental signals are determined from calculated drift predictions, based on drift measurements inferred from feedback in response to the gap-dependent strength of an interaction between probe and sample. Waveform modulation is coupled into the drive circuitry for each axis, and a waveform-synchronous feedback signal is extracted and processed to measure drift. The waveform modulations can be identical or asynchronous and applied sequentially or simultaneously in any combination of axes. An algorithm performs the process in real time.
Abstract:
Embodiments of the present invention provide methods for measuring a wafer surface. A portion of the wafer surface is measured using a particle counter to provide first measurements corresponding to a plurality of points on the wafer surface. A selected area of the wafer surface including one of the plurality of points is measured using an atomic force microscope (AFM) to provide a microroughness measurement of the selected area. The selected area is a localized area of the portion of the wafer surface measured using the particle counter. The first measurements and the microroughness measurement are provided as a measurement of the wafer surface. The portion measured using a particle counter may, for example, be substantially the entire wafer surface.
Abstract:
An apparatus and method for mass spectrometric determination of contaminant components of a thin oxide surface layer of a semiconductor wafer use a movable mechanical stage to scan and raster a large area of the wafer in a continuous scanning motion. The mass of analyte is greatly increased, resulting in improved sensitivity to trace components in the surface layer by a factor of 10-100 or more. A light beam interferometer is used to determine non-planarity from e.g. warping of the wafer and provide a correction by maintaining a constant separation between the wafer and the extraction plate or adjusting the electrical bias of the wafer relative to the extraction bias.
Abstract:
A tube scanner comprises a piezoelectric ceramic in the form of a hollow cylinder, which is externally surrounded by a Z-axis outside electrode and four slip-shaped driving electrodes arranged at intervals in the circumferential direction. The piezoelectric ceramic is internally surrounded by a Z-axis inside electrode and an XY-axis common electrode. The Z-axis inside electrode faces the Z-axis outside electrode across the piezoelectric ceramic, while the XY-axis common electrode faces the X- and Y-axis driving electrodes across the ceramic. Opposite-polarity voltages are applied to the Z-axis outside electrode and the Z-axis inside electrode, individually, whereupon the tube scanner is displaced in the Z-axis direction.
Abstract:
The invention relates to a corpuscular beam device with an objective lens for focussing a primary particle beam onto a specimen and a detector for detecting secondary and/or backscattered particles released at the specimen. Furthermore, there is a sieve electrode arranged above the specimen which has a central hole for the primary particle beam and a plurality of additional holes for the secondary and/or backscattered particles.
Abstract:
An apparatus and method for mass spectrometric determination of contaminant components of a thin oxide surface layer of a semiconductor wafer use a movable mechanical stage to scan and raster a large area of the wafer in a continuous scanning motion. The mass of analyte is greatly increased, resulting in improved sensitivity to trace components in the surface layer by a factor of 10-100 or more. A light beam interferometer is used to determine non-planarity from e.g. warping of the wafer and provide a correction by maintaining a constant separation between the wafer and the extraction plate or adjusting the electrical bias of the wafer relative to the extraction bias.
Abstract:
A positron source is applicable particularly to solid state physics, including a thin target receiving a continuous or practically continuous 10 MeV electron beam in grazing incidence and generating positrons upon interaction with this beam.