Abstract:
A method of alignment of components of a field emission display comprising the steps of: attaching a first alignment barrier to a cathode substrate including electron emitters; positioning a gate frame against the first alignment barrier such that the gate frame is aligned with the cathode substrate; and sealing the gate frame in position against the first alignment barrier to the cathode substrate. The gate frame is a discrete component manufactured separately from the cathode substrate. A second alignment barrier is attached to the gate frame and an anode plate is positioned and sealed against the second alignment barrier such that the anode plate is aligned with the gate frame.
Abstract:
A production method of an insulating layer includes a step of forming a first wire, a step of forming an insulating layer as a stack of M layers by repeatedly carrying out steps of laying and baking an insulating material on the first wire M times (M is an integer satisfying M≧3), and a step of forming a second wire on the insulating layer. An N-th insulating material used in formation of the N-th insulating layer (N is an integer satisfying 2≦N≦M−1) is baked at a temperature lower than a softening point of the N-th insulating material, and baking temperatures in formation of the (N+1)th to the M-th insulating layers are not more than the baking temperature in formation of the N-th insulating layer.
Abstract:
A process for fabricating a flat panel display having a faceplate and a baseplate comprises creating an electric field between the faceplate and the baseplate to temporarily attract the faceplate to the baseplate and attaching the baseplate and faceplate to each other while the electric field is present. Capacitor(s) are formed on the faceplate and/or baseplate of a flat panel display such that a portion of the capacitor(s) is formed on the faceplate and is aligned with the pixel matrix and/or a portion of the capacitor(s) is formed on the baseplate and is aligned with the cathode member. The first and second portions of the capacitor(s) are energized to opposite polarity voltages, and an electric field is generated which attracts and aligns the two portions of the capacitor(s) to each other. When the two portions of the capacitor(s) are aligned and attracted to each other, the pixel matrix and cathode assembly are inherently aligned with each other. Once the faceplate and the baseplate are attached to each other, the capacitor(s) are de-energized and the electric field is dissipated.
Abstract:
A method for fabricating row lines and pixel openings of a field emission array that employs only two masks. A first mask is disposed over electrically conductive material and semiconductive material and includes apertures that are alignable between rows of pixels of the field emission array. Row lines of the field emission array are defined through the first mask. A passivation layer is then disposed over at least selected portions of the field emission array. A second mask, including apertures alignable over the pixel regions of the field emission array, is disposed over the passivation layer. The second mask is used in defining openings through the passivation layer and over the pixel regions of the field emission array. Conductive material exposed through the apertures of the second mask may also be removed to expose the underlying semiconductive grid and to further define the pixel openings.
Abstract:
A method of manufacturing an image forming apparatus having an envelope made of members inclusive of a first substrate and a second substrate disposed at a space being set therebetween, image forming means and spacers disposed in the envelope, the spacers maintaining the space, the method comprising the steps of forming a spacer having a desired shape by cutting a spacer base member, and abutting the spacer upon the first and second substrates at non-cut surfaces of the spacer.
Abstract:
A method for fabricating sharp asperities. A substrate is provided which has a mask layer disposed thereon, and a layer of micro-spheres is disposed superjacent the mask layer. The micro-spheres are for patterning the mask layer. Portions of the mask layer are selectively removed, thereby forming circular masks. The substrate is isotropically etched, thereby creating sharp asperities.
Abstract:
Carbon nanotubes are aligned within a host phase of a material that has molecules that will align under a certain influence. When the host molecules become aligned, they cause the carbon nanotube fibers to also become aligned in the same direction. The film of aligned carbon nanotubes is then cured into a permanent phase, which can then be polished to produce a thin film of commonly aligned carbon nanotube fibers for use within a field emission device.
Abstract:
The present invention provides a display device comprising anodes provided over a substrate, isolators provided on the anodes, an organic electroluminescence layer provided over the anodes and the isolators, and cathodes provided on the organic electroluminescence layer so that the cathodes are isolated from each other by the isolators.
Abstract:
An automatic support pillar transfer mechanism is provided that enables an enlarged transfer range, reduced produce failure and mass-production. The touch sensors 17a to 7c are arranged on the moving section 12 to measure the plane orientation of the surface of the jig 7. The jig adjusting section 6 is driven based on the measurement results on the plane orientations of surfaces of the jig 7 to adjust the surface of the jig 7 in parallel. With plural support pillars 15 sucked and held at predetermined intervals by the jig 7 adjusted in parallel, the bonding agent coated substrate 14 attached on the moving section 12 is descended to coat the bonding agent 13 onto the one ends of the support pillars 15. The substrate 16 to which the support pillars 15 are transferred is attached to the moving section 12. Variations in plane orientation of surfaces of the substrate 16 are respectively measured by means of the touch sensors 5a to 5c. The jig adjusting section 6 is driven according to the variations in plane orientation of the surfaces of the substrate 16. With the surface of the jig 7 arranged in parallel to the surface of the substrate 16, the moving section 12 is descended to transfer the support pillars 15 onto the surface of the substrate 16.
Abstract:
The present invention is a baseplate that has a supporting substrate with a primary surface upon which an array of emitters is formed. An insulator layer with a plurality of cavities aligned with respective emitters is disposed on the primary surface, and an extraction grid with a plurality of cavity openings aligned with respective emitters is deposited on the insulator layer. The extraction grid is made from a silicon based layer of material. A current control substrate formed from the silicon based layer of material of the extraction grid is provided such that the current control substrate is electrically isolated from the extraction grid and electrically connected to the emitters. The current control substrate has sufficient resistivity to limit the current from the emitters.