Abstract:
In a method of transmitting an electromagnetic signal in an optical fiber a polarized optical base signal is generated and input at a first and of an optical fiber, an optical signal emerging from the fiber after the base signal has passed through it is recovered at a second end of the fiber; this emergent signal is processed by electro-optical modulation with the electromagnetic signal which is to be transmitted and polarization conversion is effected, and the optical signal modified in this way is reinput to the said second end of the fiber; an optical return signal emerging from the fiber after the modified optical signal has passed through it is recovered at the first end of the optical fiber and this is analyzed in order to determine the characteristics of the electromagnetic signal.
Abstract:
This invention teaches new types of linearization circuits, exhibiting improved broadband suppression of nonlinear distortion. These realizations do not require the use of reactive elements such as capacitors, or of active elements such as transistors, eliminating the drawbacks of prior art realizations. The linearization circuits are particularly suitable for linearizing optical sources with odd wave voltage to light transfer characteristics, such as externally modulated CW lasers. The fundamental building blocks of the linearization circuits of this invention are novel nonlinear electrical one-ports with an expansive V-I characteristic, denoted as ENLOP (Expansive Nonlinear one-Ports). The ENLOP building blocks are further embedded in linear circuits.
Abstract:
A control circuit comprising a thyristor and a feedback circuit formed by an inductance and a generator for producing electrical energy in response to a luminous event. The feedback circuit controls the conducting or cut-off state of the thyristor by the fact that a trigger-gate of the thyristor is connected to a terminal of the generator having a polarity cutting off the thyristor when the generator is illuminated. The thyristor is switched on in response to an energy stored in the inductance, which energy is caused by a sudden discontinuity of the luminous event.
Abstract:
A gradient-index (GRIN) rod lens for use in an optical receiver, in which the end face of the GRIN rod lens opposite a photodetector is bevelled. The resulting optical receiver achieves an optical return loss which is >10 dB higher than known optical receivers having a bevelled end solely on an optical launch side of the GRIN rod lens.
Abstract:
A semiconductor optical amplifier is utilized for optical amplification and for detection of an optical signal at the current injection electrode of the optical amplifier. A wide detection bandwidth is provided by utilizing an impedance transformer between the current injection terminal and the detection circuit. The impedance transformer typically has an input impedance of about 1 to 15 ohms. The impedance transformer can be a bipolar junction transistor circuit, a microstrip transmission line impedance transformer or a hybrid impedance transformer. A wide detection bandwidth is also obtained by providing a semiconductor optical amplifier having two current injection electrodes. A bias current is supplied through both current injection electrodes, and both electrodes produce optical gain. However, only one of the electrodes is used for optical signal detection. The detection electrode has a relatively high junction resistance and a relatively high series resistance.
Abstract:
A narrow bandwidth incoherent optical source is provided. A superluminescent source includes a gain medium having an input end and an output end. The input end of the gain medium is optically coupled to a reflector to cause spontaneous emissions within a predetermined band exiting the input of the gain medium to be reflected back into the medium. Spontaneous emissions outside of the predetermined band are lost. The gain medium can comprise a doped fiber, such as an Erbium doped fiber. An optical isolator prevents the superluminescent source from lasing. By providing a plurality of reflectors operating in different bands, the superluminescent source can generate a plurality of optical carriers.
Abstract:
An optical receiver incorporating a voltage dependant impedance arranged to shunt excess AC photodetector signal away from the receiver amplifier in response to light level.
Abstract:
A reference frequency distribution system for transmitting a reference frequency from a reference unit to a remote unit while keeping the reference frequency at the reference unit and remote unit in phase. A fiber optic cable connects the reference unit to the remote unit. A frequency source at the reference unit produces a reference frequency having an adjustable phase. A fiber optic transmitter at the reference unit modulates a light beam with the reference frequency and transmits the light beam into the fiber optic cable. A 50/50 reflector at the remote unit reflects a first portion of the light beam from the reference unit back into the fiber optic cable to the reference unit. A first fiber optic receiver disposed at the remote unit receives a second portion of the light beam and demodulates the reference frequency therefrom to be used at the remote unit. A second fiber optic receiver disposed at the reference unit receives the first portion of the light beam and demodulates a reference frequency component therefrom. A phase conjugator is connected to the frequency source for comparing the phase of the reference frequency component to the phase of the reference frequency modulating the light beam being transmitted from the reference unit and for continuously adjusting the phase of the reference frequency modulating the light beam being transmitted from the reference unit to maintain a conjugate (anti-symmetric) relationship between the reference frequency component and the reference frequency modulating the light beam whereby virtually no phase difference exists between the phase of the reference frequency component and the phase of the reference frequency modulating the light beam.
Abstract:
The optical receiver has a photodiode (10) which is reverse biased by a voltage supply (14). The voltage supply provides a variable bias voltage determined by a control unit (16) and the photodiode is matched to the load (22) by an impedance matching circuit (12). The photodiode exhibits large capacitance changes over a range of bias voltages and may be implemented using a Schottky barrier or P.sup.+ N photodiode. By changing the bias voltage, the photodiode capacitance changes to vary the tuned frequency of the receiver. The matching circuit cancels the reactive component of the photodiode impedance and matches the resistive component to the load. The photodiode may have a doping profile in which an intrinsic or lightly doped region of width greater than the average photon penetration depth is located next to the junction. After the intrinsic region, the doping profile may be selected to achieve linear tuning. This doping profile gives linear tuning without sacrificing photodiode conversion efficiency.
Abstract:
A burst mode digital data receiver automatically adjusts its logic reference voltage to be equal to one-half of the sum of the minimum and maximum excursions of a received data signal. The receiver includes a differential amplifier circuit which has a first input for receiving the data signal and a second input connected to a voltage reference circuit. The voltage reference circuit is responsive to an output signal from the amplifier circuit to produce the required logic reference voltage at the second input to the amplifier circuit by generating a feedback signal which causes the amplifier circuit to have a first gain value during the absence of the data signal and while the data signal is less than its peak amplitude and a second gain value approximately twice the first gain value for a predetermined time after the peak amplitude of the data signal is reached.