Abstract:
Provided is a method of manufacturing a ZnO-based thin film transistor (TFT). The method may include forming source and drain electrodes using one or two wet etchings. A tin (Sn) oxide, a fluoride, or a chloride having relatively stable bonding energy against plasma may be included in a channel layer. Because the source and drain electrodes are formed by wet etching, damage to the channel layer and an oxygen vacancy may be prevented or reduced. Because the material having higher bonding energy is distributed in the channel layer, damage to the channel layer occurring when a passivation layer is formed may be prevented or reduced.
Abstract:
An oligothiophene-arylene derivative wherein an arylene having n-type semiconductor characteristics is introduced into an oligothiophene having p-type semiconductor characteristics, thereby simultaneously exhibiting both p-type and n-type semiconductor characteristics. Further, an organic thin film transistor using the oligothiophene-arylene derivative.
Abstract:
Disclosed herein are an alternating copolymer of phenylene vinylene and biarylene vinylene, a preparation method thereof, and an organic thin film transistor including the same. The organic thin film transistor maintains low off-state leakage current and realizes a high on/off current ratio and high charge mobility because the organic active layer thereof is formed of an alternating copolymer of phenylene vinylene and biarylene vinylene.
Abstract:
Example embodiments of the present invention for fabricating an organic thin film transistor including a substrate, a gate electrode, a gate insulating layer, metal oxide source/drain electrodes and an organic semiconductor layer wherein the metal oxide source/drain electrodes are surface-treated with a self-assembled monolayer (SAM) forming compound containing a sulfonic acid group. According to example embodiments of the present invention, the surface of the source/drain electrodes may be modified to be more hydrophobic and/or the work function of a metal oxide constituting the source/drain electrodes may be increased to above that of an organic semiconductor material constituting the organic semiconductor layer. Organic thin film transistors fabricated according to one or more example embodiments of the present invention may exhibit higher charge carrier mobility. Also disclosed are various example devices including display devices having organic thin film transistors made by example embodiments of the present invention.
Abstract:
Disclosed herein is a composition including a perfluoropolyether derivative, a photosensitive polymer or a copolymer thereof, and a photocuring agent, a passivation layer, organic thin film transistor, and electronic device including the same, a method of forming the passivation layer and methods of fabricating the organic thin film transistor and electronic device. The organic thin film transistor may prevent or reduce oxygen and moisture from infiltrating thereinto, and thus may prevent or reduce the degradation of the performance thereof caused by ambient air, prevent or reduce the deterioration thereof, and may more easily be formed into a pattern, thereby exhibiting characteristics suitable for use in electronics.
Abstract:
A heteroacene compound, an organic thin film including a heteroacene compound and an electronic device including a thin film are provided. The heteroacene compound is a compound having six rings fused together in a compact planar structure. The compound may be used in an organic thin film and/or applied to electronic devices using a deposition process or a room-temperature solution process.
Abstract:
A ZnO-based thin film transistor (TFT) is provided herein, as is a method of manufacturing the TFT. The ZnO-based TFT has a channel layer that comprises ZnO and ZnCl, wherein the ZnCl has a higher bonding energy than ZnO with respect to plasma. The ZnCl is formed through the entire channel layer, and specifically is formed in a region near THE surface of the channel layer. Since the ZnCl is strong enough not to be decomposed when exposed to plasma etching gas, an increase in the carrier concentration can be prevented. The distribution of ZnCl in the channel layer, may result from the inclusion of chlorine (Cl) in the plasma gas during the patterning of the channel layer.
Abstract:
An organic insulator composition including a crosslinking agent and a hydroxyl group-containing oligomer or hydroxyl group-containing polymer is provided. A dielectric film and an organic thin film transistor (OTFT) using an organic insulator composition are also provided. A dielectric film may include a compound having hydroxyl group-containing oligomers or hydroxyl group-containing polymers linked by crosslinking using a crosslinking agent having at least two vinyl ether groups. An organic thin film transistor may include a gate electrode on a substrate, a gate insulating layer on the gate electrode, source and drain electrodes on the gate insulating layer and an organic semiconductor layer contacting the gate insulating layer, wherein the gate insulating layer includes an dielectric film as described above.
Abstract:
Example embodiments provide a method for forming a UV-patternable conductive polymer film. According to the method, vapor-phase polymerization (VPP) may be employed to synthesize a conductive polymer and a UV-curable polymer resin may be used as a binder to form a conductive polymer film. Example embodiments also provide a conductive polymer film formed by the method. The conductive polymer film may be patterned in a relatively simple manner while maintaining increased conductivity, improved transparency and improved flexibility. Therefore, the conductive polymer film may be used as a material for transparent electrodes of a variety of display devices, e.g., LCD and PDP devices, and electronic devices, e.g., ELs and TFTs.