Abstract:
Methods and apparatus for expeditiously releasing network resources for a mobile station based on low battery and lost signal conditions are disclosed. The wireless network (104) receives a power down warning message from the mobile station (102) indicative of a low battery condition. The wireless network (104) then identifies whether a lost signal condition exists with the mobile station (102). In response to receiving the power down warning message and subsequently identifying the lost signal condition, the wireless network (104) causes network resources for the mobile station to be released. The wireless network (104) infers that the mobile station (102) has powered down due to low battery without enough time to send a power down registration to the wireless network (104).
Abstract:
The present invention provides a method for the preparation of a UV curable electrostatographic toner. The process includes the steps of dispersing a polymeric material and a UV curable material and a UV photoinitiator in an organic solvent to form an organic phase. The organic phase is dispersed in an aqueous phase containing a particulate stabilizer to form a dispersion. The dispersion is homogenized and the organic solvent is removed from the dispersed particles in the dispersion which are then recovered.
Abstract:
A communications subsystem for a wireless device for correcting errors in a reference frequency signal. The communications subsystem comprises a frequency generator for generating the reference frequency signal and a closed loop reference frequency correction module that generates a reference frequency adjustment signal for correcting the reference frequency signal when the communications subsystem operates in closed loop mode. The subsystem further includes an open loop frequency correction means that that samples values of the reference frequency adjustment signal during the closed loop mode and generates a frequency correction signal for correcting the reference frequency signal when the communications subsystem operates in a mode other than closed loop mode.
Abstract:
A peak to average power ratio signal is generated from a first mapping function that selects the peak to average power ratio signal that corresponds to the data rate or data format of the signal to be transmitted. The selected peak to average power ratio signal is summed with a desired average transmit power signal. The resulting summation signal is input to a second effectively continuously valued mapping function comprising a table that has a plurality of power amplifier control signal values each with a corresponding peak transmit power. Each peak transmit power signal value results in a power amplifier control signal value that achieves the best possible transmitter power efficiency while still meeting out of band spurious emissions and waveform quality requirements. The summation signal value maps to one of the power amplifier control signal value that is then used to adjust a parameter such as bias of the power amplifier.
Abstract:
The settling time of a wireless receiver is reduced by providing a previously utilized gain control state value to a low noise amplifier (LNA) of a receiver front end during a warm-up portion of a wake-up period of the wireless receiver which follows a sleep period. One illustrative method includes the steps of receiving a notification signal which indicates that the wireless receiver is to be placed in a sleep mode, reading a gain control state value from a gain controller based on receiving the notification signal, storing the gain control state value in memory, providing the stored gain control state value from the memory to the wireless receiver during a warm-up period of a second wake-up period following the first wake-up period, and providing a gain control state value from the gain controller to the wireless receiver based on a signal level of a currently received signal of the wireless receiver after the warm-up period.
Abstract:
Systems and methods are provided for a cellular network to receive and decode access probes. A wireless device transmits an access probe spread with a PN code to a cellular network. The transceiver to which the wireless device is associated with can receive and decode the access probe. Additionally, other transceivers can receive and decode the access probe. In some implementations, each transceiver listens for access probes spread with their respective transceiver-specific PN code or other PN codes associated with neighbouring transceivers. In other implementations, each transceiver listens for access probes spread with a common access code. There may be more than one common access code in which each transceiver listens for access probes spread with any one of the common access codes.
Abstract:
A power management system and method for a wireless communication device generates an average desired transmit power signal based on at least one of a received signal strength indicator signal and a power control instruction signal from a base station. A power supply level adjustment signal is generated based on the data parameters of an outgoing data stream and at least one environmental information signal. A combination of the power supply level adjustment signal and the average desired transmit power or a gain control signal and an altered version of the power supply level adjustment signal is used to generate a variable power supply signal that is provided to an output amplifier block for sufficiently generating outgoing wireless device radio signals while reducing power loss in the output amplifier block.
Abstract:
In one illustrative example, a mobile station includes a wireless transceiver; a user interface including a Push-To-Talk (PTT) switch for initiating a PTT voice communication and a microphone for receiving voice input signals; one or more processors; and a First-In-First-Out (FIFO) buffer memory coupled to the one or more processors. The one or more processors are operative to identify a user actuation of the PTT switch and, in response, save digital voice data corresponding to voice input signals in the FIFO buffer memory; cause a request for the PTT voice communication to be made through a wireless network; identify that a floor grant has been received through the wireless network in response to the request; and after identifying the floor grant, cause the digital voice data from the FIFO buffer memory to be retrieved and transmitted to the wireless network for the PTT voice communication. Advantageously, the saving of the digital voice data in the FIFO buffer memory is performed at least in part during a delay time period between the user actuation of the PTT switch and the identifying of the floor grant.
Abstract:
A composition is provided that includes a product of combining, in the presence of a free radical initiator a catalyst precursor and at least one monomer wherein the monomer and the catalyst precursor are poiymerizable by free-radical polymerization and wherein the catalyst precursor compound is represented by the formula: wherein each X is an abstractable ligand; each R, R′, R″, R′″, Rp1 and Rp2 is independently hydrogen or a hydrocarbyl group provided at least one of Rp1, Rp2, and R′″ can be polymerized by a free radical initiator; and M is a Group-4-11 metal.
Abstract:
In one illustrative example, a mobile station includes a wireless transceiver; a user interface including a Push-To-Talk (PTT) switch for initiating a PTT voice communication and a microphone for receiving voice input signals; one or more processors; and a First-In-First-Out (FIFO) buffer memory coupled to the one or more processors. The one or more processors are operative to identify a user actuation of the PTT switch and, in response, save digital voice data corresponding to voice input signals in the FIFO buffer memory; cause a request for the PTT voice communication to be made through a wireless network; identify that a floor grant has been received through the wireless network in response to the request; and after identifying the floor grant, cause the digital voice data from the FIFO buffer memory to be retrieved and transmitted to the wireless network for the PTT voice communication. Advantageously, the saving of the digital voice data in the FIFO buffer memory is performed at least in part during a delay time period between the user actuation of the PTT switch and the identifying of the floor grant.