Abstract:
The present invention provides a backlight module and a housing unit structure thereof. The backlight module includes a back plate having a first edge, a second edge, a third edge and a fourth edge. The edges of the back plate are provided with a housing including two housing strips and housing unit structures. The housing strips are disposed on the first edge and the third edge. The length of the housing unit structure is shorter than that of the second or fourth edge of the back plate, so that the second or fourth edge can be mounted with a suitable number of the housing unit structures, while insufficient length portion is compensated by buffering strips. The backlight module uses an adjustable modular design to adjust the number of the housing unit structures and the buffering strips for being suitably applied to various backlight modules with different sizes. Except for reducing the use of material, the development cost and time of the backlight module can be saved.
Abstract:
An organic electronic device includes a first electrode layer, an organic resistive layer coupled to the first electrode layer wherein the organic resistive layer defines at least three regions, an organic active layer coupled to the organic resistive layer, and a second electrode layer coupled to the organic active layer. Each of the at least three regions is characterized by one of the plurality of resistances and the plurality of resistances includes at least three discrete resistances that are different from one another. The regions can be fabricated by selectively exposing portions of the organic resistive layer to a chemical, selectively removing portions of the organic resistive layer, or depositing a plurality of blends.
Abstract:
A method of fabricating metal oxide TFTs on transparent substrates includes the steps of positioning an opaque gate metal area on the front surface of the substrate, depositing transparent gate dielectric and transparent metal oxide semiconductor layers overlying the gate metal and a surrounding area, depositing transparent passivation material on the semiconductor material, depositing photoresist on the passivation material, exposing and developing the photoresist to remove exposed portions, etching the passivation material to leave a passivation area defining a channel area, depositing transparent conductive material over the passivation area, depositing photoresist over the conductive material, exposing and developing the photoresist to remove unexposed portions, and etching the conductive material to leave source and drain areas on opposed sides of the channel area.
Abstract:
Two-terminal switching devices characterized by high on/off current ratios and by high breakdown voltage are provided. These devices can be employed as switches in the driving circuits of active matrix displays, e.g., in electrophoretic, rotating element and liquid crystal displays. The switching devices include two electrodes, and a layer of a broad band semiconducting material residing between the electrodes. According to one example, the cathode comprises a metal having a low work function, the anode comprises an organic material having a p+ or p++ type of conductivity, and the broad band semiconductor comprises a metal oxide. The work function difference between the cathode and the anode material is preferably at least about 0.6 eV. The on/off current ratios of at least 10,000 over a voltage range of about 15 V can be achieved. The devices can be formed, if desired, on flexible polymeric substrates having low melting points.
Abstract:
Two-terminal switching devices characterized by high on/off current ratios and by high breakdown voltage are provided. These devices can be employed as switches in the driving circuits of active matrix displays, e.g., in electrophoretic, rotataing element and liquid crystal displays. The switching devices include two electrodes, and a layer of a broad band semiconducting material residing between the electrodes. According to one example, the cathode comprises a metal having a low work function, the anode comprises an organic material having a p+ or p++ type of conductivity, and the broad band semiconductor comprises a metal oxide. The work function difference between the cathode and the anode material is preferably at least about 0.6 eV. The on/off current ratios of at least 10,000 over a voltage range of about 15 V can be achieved. The devices can be formed, if desired, on flexible polymeric substrates having low melting points.
Abstract:
Processes for forming an electronic device include forming a first radiation region, a second radiation region spaced apart from the first radiation region, and an insulating region. The insulating region can have a first side and a second side opposite the first side. The first radiation region can lie immediately adjacent to the first side, and the second radiation region can lie immediately adjacent to the second side. Within the insulating region, no other radiation region may lie between the first and second radiation regions, and the insulating region can include an insulating layer that includes a plurality of openings. A process for forming the electronic device can include patterning an insulating layer.
Abstract:
A multi-color pixel array and method includes an organic active layer of a material emitting a first spectral distribution of visible light having a first color; a transparent conducting layer, each of which include portions that correspond to individual pixels and sub-pixels of the array; one or more pairs of electrodes for selectively energizing sub-pixel areas of the organic active layer to generate an emission of visible light of a first spectral distribution; wherein different sub-pixels within individual pixels of the array have different optical thicknesses based at least on corresponding sub-pixel portions of the transparent conducting layer having different optical thicknesses; and wherein at least one sub-pixel of has a selected color different from the first color due to at least one narrowed spectral band being selected out of the first spectral distribution as emitted light is coupled out of the display through the transparent conducting layer.
Abstract:
An electronic device can include a first workpiece including at least 4,000 electronic components that each include a corresponding electrode and a second workpiece including at least one conductor. The electronic device can also include at least 4,000 conductive members that are substantially directly bonded to the corresponding electrodes and the at least one conductor.
Abstract:
A fabrication method is used in conjunction with a semiconductor device having a metal oxide active layer less than 100 nm thick and the upper major surface and the lower major surface have material in abutting engagement to form underlying interfaces and overlying interfaces. The method of fabrication includes controlling interfacial interactions in the underlying interfaces and the overlying interfaces to adjust the carrier density in the adjacent metal oxide by selecting a metal oxide for the metal oxide active layer and by selecting a specific material for the material in abutting engagement. The method also includes one or both steps of controlling interactions in underlying interfaces by surface treatment of an underlying material forming a component of the underlying interface and controlling interactions in overlying interfaces by surface treatment of the metal oxide film performed prior to deposition of material on the metal oxide layer.
Abstract:
An electronic device includes a radiation-emitting component, a radiation-responsive component, or a combination thereof. In one embodiment, the electronic device includes a substrate and a first structure overlying the substrate. The electronic device also includes a second structure that includes a first layer, wherein the first layer has a first refractive index, and the first layer includes a first edge. The electronic device further includes a second layer overlying at least portions of the first structure and the second structure at the first edge. The second layer has a second refractive index that is lower than the first refractive index. In another embodiment, the first structure includes a layer having a perimeter and a pattern lying within the perimeter. The pattern extends at least partly though the first layer to define an opening with a first edge. In another embodiment, a process is used to form the electronic device.