Abstract:
A circuit buffer for outputting a voltage signal having a magnitude greater than a withstand voltage of any circuit element in the circuit buffer includes a first transistor and a second transistor. The first transistor includes a first terminal and a second terminal electrically connected to an input terminal and an output terminal of the circuit buffer respectively, a third terminal electrically connected to a first power supply terminal, and a fourth terminal electrically connected to the third terminal of the first transistor. The second transistor includes a first terminal and a second terminal electrically connected to the input terminal and the output terminal of the circuit buffer respectively, a third terminal electrically connected to a second power supply terminal, and a fourth terminal electrically connected to the third terminal of the second transistor. Voltages of the first and second power supply terminal are switched between two different levels, respectively.
Abstract:
A power supply module includes a source driver power supply circuit, a gate driver power supply circuit, a first capacitor group, a second capacitor group and a switch module. The source driver power supply circuit and the gate driver power supply circuit are utilized for driving a source driver and a gate driver of a display device, respectively. The first capacitor group includes at least one first storage capacitor for storing electric charges for driving source driving signals, and at least one first flying capacitor. The second capacitor group includes at least one second storage capacitor for storing electric charges for driving gate driving signals, and at least one second flying capacitor. The switch module is utilized for switching the first capacitor group to be used for the gate driver power supply circuit or switching the second capacitor group to be used for the source driver power supply circuit.
Abstract:
A driving circuit for a display includes a logic unit and a memory array coupled to the logic unit for turning on a plurality of memory cells corresponding to the word-line according to a word-line scanning signal to refresh the plurality of memory cells corresponding to the word-line; wherein the memory array has a first number of bit-lines and a second number of word-lines, wherein the driving circuit is used for driving a display panel having a third number of data-lines and a fourth number of scan-lines, and a product of the first number and the second number is equal to a product of the third number and the fourth number.
Abstract:
A method of refreshing a memory array for a driving circuit includes generating a word-line scanning signal corresponding to a word-line of a memory array, and turning on a plurality of memory cells corresponding to the word-line of the memory array according to the word-line scanning signal to refresh the plurality of memory cells corresponding to the word-line of the memory array, wherein the memory has a first number of bit-lines and a second number of word-lines.
Abstract:
The present invention relates to a sensing structure of touch panel, which comprises a plurality of electrode groups disposed on a substrate. The substrate has a first side and a second side. Each electrode group comprises a first external electrode, a second external electrode, a plurality of internal electrodes, and a plurality of wires. The first external electrode is disposed on a first side; the second external electrode is disposed on the second side; the plurality of internal electrodes are disposed between the first external electrode and the second external electrode; and the plurality of wires are disposed on both sides of the electrode group alternately. Thereby, by disposing the first external electrode, the second external electrode, and the internal electrodes, all being zigzag, the disposable number of electrodes in each electrode group is increased. Accordingly, the sensitivity of touch sensing for the sensing structure of touch panel is enhanced.
Abstract:
The present invention provides a driving circuit for driving a color display to display black-and-white/grayscale images and comprises a data conversion circuit and a driver. The data conversion circuit receives input data transmitted by a microprocessor. The format of the input data is a black-and-white/grayscale format. The data conversion circuit converts the input data for producing output data. The format of the output data is a color format. The driver receives the output data and drives the color display to display the black-and-white/grayscale image. The driving circuit will convert the input data transmitted by the microprocessor with limited transmission capability and produce color output data for driving the color display to display the black-and-white/grayscale image. Accordingly, by using the driving circuit according to the present invention, an electronic device with limited transmission capability can work with the color display to display black-and-white/grayscale images.
Abstract:
The present disclosure provides a method of reusing electrical energy for a charge pump. The method comprises operating in a reusing phase after a boosting phase is completed; retrieving energy of parasitic capacitance in the reusing phase; and reusing the energy of the parasitic capacitance for an internal circuit.
Abstract:
The present invention relates to an analog-to-digital converting circuit with temperature sensing and the electronic device thereof. The present invention uses a first impedance device to receive a reference voltage and produces an input current according to a temperature. An analog-to-digital converting unit is coupled to the first impedance device and produces a digital output signal according to the input current. Thereby, according to the present invention, by integrating the first impedance device into the analog-to-digital converting circuit, the circuit area and the power consumption can be lowered, which further reduces the cost and improves the accuracy of temperature sensing.
Abstract:
The present relates to a display panel and the driving circuit thereof. A scan driving circuit of the driving circuit of the display panel according to the present invention produces a plurality of scan signal for scanning a plurality of pixel structures of the display panel. In addition, a data driving circuit produces a plurality of data signals corresponding to the plurality of scan signals and transmits the plurality of data signals to the plurality of pixel structures, where a common electrode of the plurality of pixel structures is coupled to a ground. Moreover, the data driving circuit according to the present invention adjusts the signal levels of a plurality of gamma voltages according to a compensation signal of a compensation circuit, and thus further adjusting the levels of the data signals.
Abstract:
The present invention relates to a sensing structure of touch panel, which comprises a plurality of electrode groups disposed on a substrate. The substrate has a first side and a second side. Each electrode group comprises a first external electrode, a second external electrode, a plurality of internal electrodes, and a plurality of wires. The first external electrode is disposed on a first side; the second external electrode is disposed on the second side; the plurality of internal electrodes are disposed between the first external electrode and the second external electrode; and the plurality of wires are disposed on both sides of the electrode group alternately. Thereby, by disposing the first external electrode, the second external electrode, and the internal electrodes, all being zigzag, the disposable number of electrodes in each electrode group is increased. Accordingly, the sensitivity of touch sensing for the sensing structure of touch panel is enhanced.