Abstract:
Data streams stored in buffers are modulated by modulation sections. Multipliers multiply the signals output from the modulation sections by weights output from a weight control section. The signals output from the multipliers are added up by addition sections, subjected to radio transmission processing by transmission radio sections and sent through antennas. A buffer control section controls the buffers based on a retransmission count output from a retransmission count detection section. The weight control section outputs weights different from weights at the time of previous transmission to the multipliers every time data is retransmitted. This allows a diversity gain at the time of data retransmission to be increased even if a time variation of the propagation path environment for radio signals is slow.
Abstract:
There is disclosed a radio transmission device capable of improving the throughput. The radio transmission device transmits a first signal and a second signal which are different from each other. In the radio transmission device, an FFT unit subjects first data to an FFT process. A sub-carrier allocation unit maps the first data which has been subjected to the FFT process and the second data into different frequencies. An IFFT unit subjects the mapped signal to the IFFT transform. A transmission radio processing unit transmits the signal which has been subjected to the IFFT processing, with a single carrier.
Abstract:
In DFT-s-OFDM, disclosed are a wireless transmission apparatus and wireless transmission method whereby freedom of allocation of frequencies is secured, while increases of CM are avoided. An SD number determination unit (152) determines an SD number based on the channel quality information of a mobile station and a threshold value that is set by a threshold value setting unit (151). A transmission bandwidth determination unit (153) determines the transmission bandwidth necessary for transmission of the transmission data. An allocation commencement position determination unit (154) determines the position for commencement of allocation of transmission data. If the SD number is equal to or more than the threshold value, a divided bandwidth determination unit (155) sets all the divided bandwidths to equal values and a frequency interval determination unit (156) sets all the frequency intervals to equal values.
Abstract:
Provided is a relay transmission method capable of obtaining the diversity effect even when a relay station has detected an error in a relay signal when performing communication between a base station and a mobile station via a relay station. In the relay station used in this method, a decoding unit (104) performs error-correction-decoding of a systematic bit by performing repeated decoding such as a turbo decoding by using a parity bit and obtains a decoding result formed by a systematic bit after the error-correction-decoding. An error judging unit (105) judges whether the decoded result has an error by using CRC (Cyclic Redundancy Check). An encoding unit (106) performs error-correction-encoding of the decoded result and obtains a systematic bit after error-corrected-encoded and a parity bit. A selection unit (107) selects the decoded result inputted from the decoding unit (104) or the bit string inputted from the encoding unit (106) according to the judgment result obtained by the error judging unit (105) and outputs it to a modulation unit (108).
Abstract:
A duplicating section duplicates a bit sequence to be input, and a 16QAM section modulates a bit sequence of a duplicating source to form a symbol, a 16QAM section modulates the duplicated bit sequence to form a symbol, an S/P section parallel converts the symbol sequence input in series, an S/P section parallel converts the symbol sequence input in series, and an IFFT section 15 provides IFFT processing to the input symbol sequence. Since each of multiple same bits duplicated by the duplicating section is included in a different symbol, each of the multiple same bits is allocated to each of multiple subcarriers each having a different frequency by IFFT processing. As a result, a multicarrier signal including the multiple same bits each having a different frequency is generated.
Abstract:
A wireless receiving apparatus capable of efficiently removing interference signals in a multicarrier communication. In a mobile station incorporating this wireless receiving apparatus, a selecting part selects a plurality of the same symbols in accordance with a mapping pattern established at the time of generating OFDM symbols in a base station. A correlation value calculating part determines correlation values between the subcarriers of the same symbols to generate an R-matrix, and further determines an inverse matrix of the R-matrix. An MMSE processing part performs an MMSE processing to determine a weight from both a P-vector received from a channel estimating part and the inverse matrix of the R-matrix received from the correlation value calculating part. Multipliers multiply each of the symbols selected by the selecting part by the weight determined by the MMSE processing part. A combining part combines the symbols as multiplied by the weight.
Abstract:
A radio receiver apparatus that can effectively utilize GI to improve the reception quality. In this apparatus, a data extracting part (104) extracts a data portion of a direct wave from a signal subjected to a radio reception process by a received RF part (102). A GI extracting part (107) extracts, from the signal subjected to the radio reception process by the received RF part (102), GI having a length determined by an extracted GI length deciding part (106). The extracted GI is adjusted by a data position adjusting part (108) such that its rear end coincides with the read end of the extracted data portion. A combining part (109) combines the extracted data portion with the GI the data position of which has been adjusted. The combined signal is then supplied to a frequency axis equalizing part (110), which equalizes the signal distortions of the combined signal on the frequency axis.
Abstract:
A radio transmission apparatus performs communications with high transmission efficiency. In this apparatus, a modulator modulates data and outputs to a first spreader. A second modulator modulates data under a modulation scheme having a higher M-ary number than the first modulator and outputs the modulated data to a second spreader. The first spreader spreads the data and outputs the spread data to a frequency domain mapping section. The second spreader spreads the data and outputs the spread data to a time domain mapping section. A frequency domain mapping section maps chips with spread data on subcarriers in the frequency domain and outputs the data with chips mapped on subcarriers to an IFFT section. The time domain mapping section maps chips with spread data on subcarriers in the time domain and outputs the data with chips mapped on subcarriers to the IFFT section.
Abstract:
Provided is a base station capable of suppressing increase of overhead of allocation result report in frequency scheduling in multi-carrier communication and obtaining a sufficient frequency diversity effect. In the base station, encoding units (101-1 to 101-n) encode data (#1 to #n) to mobile stations (#1 to #n), modulation units (102-1 to 102-n) modulate the encoded data so as to generate a data symbol, a scheduler (103) performs frequency scheduling according to a CQI from each mobile station so as to uniformly allocate data to the respective mobile stations for a part of RB extracted from a plurality of RB, and an SCCH generation unit (105) generates control information (SCCH information) to report the allocation result in the scheduler (103) to the respective mobile stations.
Abstract:
In order to improve reception performance, while reducing the arithmetic amount of a receiver apparatus in a multi-carrier CDMA system, different weightings are performed for the respective spread codes (chips) included in subcarriers in addition to performing weightings for the respective subcarriers.