Abstract:
For manipulation of a specimen, the specimen and a focusing location of a composite material lens are brought into spatial coincidence. The composite material lens has at least one of a negative effective permittivity and a negative effective permeability at a frequency of an applied light beam. The composite material lens focuses the light beam toward the focusing location and forms an optical trap for the specimen.
Abstract:
Devices, systems, and methods using Surface Enhanced Raman Spectroscopy (SERS) are disclosed. A device for generating Raman scattered radiation comprises a laser source and a SERS-active structure. The laser source may be configured for emanating radiation from an emanating surface or by forming a depression in the laser source, which creates a region of increased evanescent field from the laser source. SERS systems and methods include a device for generating Raman scattered radiation with a detector configured to receive the Raman scattered radiation.
Abstract:
Structures for amplifying light include a resonant cavity in which an analyte may be positioned. The structures for amplifying light may be used to amplify the incident light employed in surface enhanced Raman spectroscopy (SERS). SERS systems employing the structures for amplifying light of the present invention and methods of performing SERS are also disclosed.
Abstract:
Wavelength-tunable radiation amplifying structures for Raman spectroscopy are disclosed that include resonant cavities having Raman signal-enhancing structures disposed therein. Systems that include the amplifying structures and methods of performing spectroscopic analysis using the structures and systems are also disclosed.
Abstract:
A method for increasing adhesion between a substrate and a polymeric imprintable material during an imprinting procedure. The method includes chemically bonding a plurality of molecules to a surface of a substrate to form a self-assembled monolayer thereon. A monomer is copolymerized with the self-assembled monolayer to form a polymeric imprintable material that is chemically bonded to the self-assembled monolayer. Adhesion between the polymeric imprintable material and the substrate is substantially increased by the self-assembled monolayer.
Abstract:
The automatic object distribution of the present invention allows object oriented programs to be run as distributed programs without any explicit networking code, and without using an interface definition language (IDL). The present invention allows programmers to experiment with different distributions without complicating the programming task. It accomplishes this by generating two proxies that allow method calls written for local invocation to be invoked over a network. These dynamically-generated proxies allow calls to flow across a network as if they were local.
Abstract:
The present invention provides an application of Metrnl protein in preparing a hypolipidemic, hypoglycemic medicine or dietary supplement. The present invention further provides a method for preparing a mouse with fat-specific overexpression of Metrnl.
Abstract:
The present invention provides an application of Metrnl protein in preparing a hypolipidemic, hypoglycemic medicine or dietary supplement. The present invention further provides a method for preparing a mouse with fat-specific overexpression of Metrnl.
Abstract:
An apparatus for filtering species in a fluid includes a body having a first side and a second side, a first set of nano-fingers positioned on the body near the first side, a second set of nano-fingers positioned on the body closer to the second side than the first set of nano-fingers, wherein the nano-fingers in the second set of nano-fingers are arranged on the body at a relatively more densely than the nano-fingers in the first set of nano-fingers, and a cover positioned over the first set of nano-fingers and the second set of nano-fingers to form a channel with the body within which the first and second sets of nano-fingers are positioned.
Abstract:
A surface enhanced Raman spectroscopy (SERS) sensor, system and method employ nanorods and independent nanoparticles that interact. The sensor includes at least two spaced apart nanorods attached at first ends to a substrate and an independent nanoparticle. Second ends of the nanorods are movable into close proximity to one another and include a Raman active surface. The nanoparticle has a functionalized surface that includes a Raman signal generator. An interaction between the nanoparticle and the nanorod second ends in close proximity is detectable. The system includes the SERS sensor, an illumination source and a Raman signal detector. The method includes illuminating the interaction of the nanoparticle and the nanorods with an analyte, and detecting an effect on a Raman signal caused by the analyte.