Abstract:
A mobile human interface robot including a drive system having at least one drive wheel driven by a corresponding drive motor, a localization system in communication with the drive system, and a power source in communication with the drive system and the localization system. The robot further including a touch response input supported above the drive system. Activation of the touch response input modifies delivery of power to the drive system to reduce a drive load of the corresponding drive motor of the at least one drive wheel white allowing continued delivery of power to the localization system.
Abstract:
A mobile human interface robot that includes a drive system, a controller in communication with the dive system, and an electronic display supported above the drive system and in communication with the controller. The controller includes a central processing unit, a general purpose graphics processing unit, and memory in electrical communication with the central processing unit and the general purpose graphics processing unit. Moreover, the controller has a display operating state and a driving operating state. The controller executes graphics computations on the general purpose graphics processing unit for displaying graphics on the electronic display during the display operating state; and the controller executes mobility computations on the general purpose graphics processing unit for issuing commands to the drive system during the driving operating state.
Abstract:
A self-propelled work apparatus includes a traveling unit, a work unit, and a user interface. The traveling unit moves in a self-propelled manner to a position near a user. The work unit performs predetermined work. The user interface adjusts a position of the traveling unit located near the user, in accordance with a motion of the user. The work unit starts the predetermined work when the user interface is activated in accordance with the user motion.
Abstract:
A method is provided for initiating a telepresence session with a person, using a robot. The method includes receiving a request to host a telepresence session at the robot and receiving an identification for a target person for the telepresence session by the robot. The robot then searches a current location for a person. If a person is found, a determination is made regarding whether the person is the target person. If the person found is not the target person, the person is prompted for a location for the target person. The robot moves to the location given by the person in response to the prompt.
Abstract:
An indoor navigational system determines a location of a moveable object in an indoor area and displays this location to a user. The system includes one or more dead-reckoning sensors, one or more absolute position sensors, and a processor. The processor determines the location of the moveable object based on signals received from the sensors. The system also includes a display device to display the location of the moveable object in a graphical representation of the indoor area based on messages from the processor indicating the location of the moveable object.
Abstract:
A robotic system that includes a robot and a remote station. The remote station can generate control commands that are transmitted to the robot through a broadband network. The control commands can be interpreted by the robot to induce action such as robot movement or focusing a robot camera. The robot can generate reporting commands that are transmitted to the remote station through the broadband network. The reporting commands can provide positional feedback or system reports on the robot.
Abstract:
A controller of a mobile robot that moves an object such that the position of a representative point of the object and the posture of the object follow a desired position and posture trajectory is provided. The desired posture trajectory of the object includes the desired value of the angular difference about a yaw axis between a reference direction, which is a direction orthogonal to the yaw axis of the object, and the direction of the moving velocity vector of the representative point of the object, defined by the desired position trajectory. The controller has a desired angular difference setting means which variably sets the desired value of the angular difference according to at least a required condition related to a movement mode of the object. This allows the object to be moved at a posture which meets the required condition of the movement mode.
Abstract:
A method is provided for navigation of a mobile device. Spatial information of at least one beacon detected in an image relative to the image is determined. The image includes an image of the at least one beacon within at least part of an environment surrounding the mobile device. A position of the mobile device based on said spatial information is determined using encoded visual information of the at least one beacon.
Abstract:
A robot system includes a mobile robot having a controller executing a control system for controlling operation of the robot, a cloud computing service in communication with the controller of the robot, and a remote computing device in communication with the cloud computing service. The remote computing device communicates with the robot through the cloud computing service.
Abstract:
A robotic cart pulling vehicle includes a positioning error reducing system for reducing accumulated error in the ded-reckoning navigational system. The positioning error reducing system including at least one of a low load transfer point of the cart attaching mechanism, a floor variation compliance structure whereby the drive wheels maintain a substantially even distribution of load over minor surface variations, a minimal wheel contact surface structure, a calibration structure using at least one proximity sensor mounted on the robot body, and a common electrical and mechanical connection between the cart and the robot vehicle formed by a cart attaching post.