Abstract:
A dual band LTE small cell base station communicates on both licensed bands and unlicensed bands. The small cell base station modifies the communication protocol utilized by the licensed band to enable communication over an unlicensed band. This modification involves replacing the physical (PHY) layer of the licensed band communication protocol with the PHY layer of a to-be-used protocol in an unlicensed band.
Abstract:
A dual band spectrum allocation system and method for wireless data communications uses discrete bands for upstream and downstream data communications. A preferred embodiment uses unlicensed UNII bands for license-free data transmissions from a subscriber to a hub, and uses relatively interference free licensed bands for data transmissions from a hub to subscribers, thereby allowing use of greater bandwidth, simplifying system licensing and reducing filtering requirements for subscribers.
Abstract:
Systems and methods for controlling the transmit power and the receive sensitivity of an access point for achieving symmetric link balancing is described. When an access point operates with symmetric link performance, the access point does not inefficiently use available bandwidth for transmitting or re-transmitting to a client station that cannot communicate with the access point. Moreover, the access point does not back off transmissions due to activity of neighboring basic service sets when not needed. The receive sensitivity can be controlled using a hardware attenuator or software commands that adjust a programmable gain in a wireless local area network chipset used by the access point, or it can be controlled using adjustable levels in the software for processing or responding to packets.
Abstract:
A computer-implemented method for providing an interface to a first network device using a second device through one or more wired and/or wireless networks is described. The method includes receiving an installation indication at a processor of the first network device from a remote application on a second network device, determining whether a correlated application corresponding to the remote application is installed on the first network device, transceiving data between the correlated application to the second network device based on a determination that the correlated application corresponding to the remote application is installed on the first network device, and downloading the correlated application corresponding to the remote application based on a determination that the correlated application corresponding to the remote application is not installed on the first network device.
Abstract:
Systems and methods for controlling the transmit power and the receive sensitivity of an access point for achieving symmetric link balancing is described. When an access point operates with symmetric link performance, the access point does not inefficiently use available bandwidth for transmitting or re-transmitting to a client station that cannot communicate with the access point. Moreover, the access point does not back off transmissions due to activity of neighboring basic service sets when not needed. The receive sensitivity can be controlled using a hardware attenuator or software commands that adjust a programmable gain in a wireless local area network chipset used by the access point, or it can be controlled using adjustable levels in the software for processing or responding to packets.
Abstract:
Techniques are disclosed for controlling, in a network device, multiple radio circuits operating in a same or similar frequency band and in close physical proximity. In some embodiments, the radio circuits operate on the same network protocol. The network device can include a coexistence controller coupled to the network circuits. According to some embodiments, the network circuits are each assigned a priority, and the coexistence controller can control operations among the network circuits by selectively adjusting one or more transmission operating parameters of a respective network circuit based on a plurality of operating criteria, which include each network circuit's priority. Among other benefits, the embodiments disclosed herein can increase wireless network bandwidth and reduce mobile device power consumption by providing coordination among the radio circuits so that the transmitting and receiving operations are performed in a way that they do not interfere with their respective antennas.
Abstract:
Techniques are disclosed for controlling, in a network device, multiple radio circuits operating in a same or similar frequency band and in close physical proximity. In some embodiments, the radio circuits operate on the same network protocol. The network device can include a coexistence controller coupled to the network circuits. According to some embodiments, the network circuits are each assigned a priority, and the coexistence controller can control operations between the network circuits by selectively adjusting one or more transmission operating parameters of a respective network circuit based on a plurality of operating criteria, which include each network circuit's priority. Among other benefits, the embodiments disclosed herein can increase wireless network bandwidth and reduce mobile device power consumption by providing coordination among the radio circuits so that the transmitting and receiving operations are performed in a way that they do not interfere with their respective antennas.
Abstract:
Techniques are disclosed for controlling, in a network device, multiple radio circuits operating in a same or similar frequency band and in close physical proximity. In some embodiments, the radio circuits operate on the same network protocol. The network device can include a coexistence controller coupled to the network circuits. According to some embodiments, the network circuits are each assigned a priority, and the coexistence controller can control operations between the network circuits by selectively adjusting one or more transmission operating parameters of a respective network circuit based on a plurality of operating criteria, which include each network circuit's priority. Among other benefits, the embodiments disclosed herein can increase wireless network bandwidth and reduce mobile device power consumption by providing coordination among the radio circuits so that the transmitting and receiving operations are performed in a way that they do not interfere with their respective antennas.
Abstract:
Techniques are disclosed for controlling, in a network device, multiple radio circuits operating in a same or similar frequency band and in close physical proximity. In some embodiments, the radio circuits operate on the same network protocol. The network device can include a coexistence controller coupled to the network circuits. According to some embodiments, the network circuits are each assigned a priority, and the coexistence controller can control operations between the network circuits by selectively adjusting one or more transmission operating parameters of a respective network circuit based on a plurality of operating criteria, which include each network circuit's priority. Among other benefits, the embodiments disclosed herein can increase wireless network bandwidth and reduce mobile device power consumption by providing coordination among the radio circuits so that the transmitting and receiving operations are performed in a way that they do not interfere with their respective antennas.
Abstract:
Techniques are disclosed for a wireless router or residential gateway to distinguish power-sensitive wireless sensors and provide separate treatments thereto for low power consumption connections. In some embodiments, a network device includes a wireless network circuit, and control circuitry coupled to the network circuit and configured to, upon receipt of a request of connection from a client, identify whether the client is power-sensitive. The network device can further cause, if the client is identified as power-sensitive, the power-sensitive client to connect using a low-power connection while maintaining a regular connection to other regular clients. The low-power connection can be operated on a first channel different from but in a same frequency band as a second channel on which the regular connection is operated.