Abstract:
A photodiode for detecting photons comprising a substrate; first semiconducting region suitable for forming a contact thereon; a first contact; a second semiconducting region comprising an absorption region for the photons and being formed of a semiconductor having one or more of a high surface recombination velocity or a high interface recombination velocity; a second contact operatively associated with the second region; the first semiconducting region and the second semiconducting region forming a first interface; the second semiconducting region being configured such that reverse biasing the photodiode between the first and second contacts results in the absorption region having a portion depleted of electrical carriers and an undepleted portion at the reverse bias point of operation; the undepleted portion being smaller than the absorption depth for photons; whereby the depletion results in the creation of an electric field and photogenerated carriers are collected by drift; and a method of making.
Abstract:
A supercapacitor or electrochemical capacitor includes spaced apart electrodes which are separated from each other by a separator made of an electrically insulating material. Each electrode is formed of carbonaceous material and capable of being impregnated with a liquid electrolyte. Metal current collectors are provided on the sides of the electrodes opposite from the separator. The electrodes have holes or elongated orifices extending through the electrodes to reduce ionic impedance in order to produce faster charging and discharging of the device.
Abstract:
A method and apparatus is provided for modeling a three-dimensional topological surface of an object acquiring, using a thermal imaging camera, a first image of the object, wherein the first image comprises a plurality of pixels each representative of at least one component of thermal data, calculating a normal vector for each pixel in the first image, corresponding to the normal vector on a surface of the object, generating a three-dimensional model representing a surface of the object based on aggregating the normal vector for each pixel together in the first image.
Abstract:
A novel methodology for automatically linearizing a harmonic radar transmitter—termed Feed-Forward Filter Reflection (FFFR)—is disclosed. The method combines the reflected second harmonic from a filter with the signal passing directly through the filter. The second harmonic from these two paths are combined with equal and opposite amplitudes to reduce the second harmonic beyond filtering alone. This methodology has been experimentally verified at transmit frequencies between 800 and 1000 MHz. Implemented properly, the technique provides greater than 100 dB rejection between 1.6 and 2.0 GHz. Although the tuning has been automated, further optimization is possible. Automated tuning is demonstrated over 400 MHz of bandwidth with a minimum cancellation of 110 dB. One application for the harmonic cancellation is to create a linear radar transmitter for the remote detection of non-linear targets.
Abstract:
The invention is an apparatus and method for safely depressurizing milling vials. The invention utilizes a machinist vise in communication with a pneumatic air cylinder mounted in a jig inside glove box enclosure. The invention utilizes a method for safely depressurizing milling vials. The milling vials are placed into the machinist vise inside the enclosure. The ram of the pneumatic air cylinder is placed on top of the milling vial and the pneumatic air cylinder is pressed firmly against the cap of the milling vial. Next, the air inside the enclosure is evacuated of atmosphere after which the pressure is slowly released from the pneumatic air cylinder. During this stage of the method the operator is a safe distance from the enclosure. As pressure is removed from the pneumatic air cylinder the ram is retracted and the cap of milling vial is removed.
Abstract:
A system for reception of electromagnetic waves in spectrum in which interference occurs comprising at least one transmitter; at least one receiver configured to receive the received signal; a first memory portion configured to store data relating to a point target response; a spectrum estimator configured to estimate the frequencies at which interfering signals occur; at least one processor configured to generate an estimation of the interfering signals at the frequencies estimated by the spectrum estimator; a second memory portion operatively connected to the at least one processor configured to store the estimation of the components of the interfering signals; the at least one processor configured to substantially reduce or eliminate radio frequency interfering signals from the received signal utilizing the point target response and the estimation of the interfering signals; and a method to substantially reduce or eliminate radio frequency interfering signals from for image data.
Abstract:
A radio frequency patch antenna having a radiator patch constructed of an anisotropic material, such as carbon nanotube sheet material. Such material is flexible so that the antenna may be wearable and/or integrated into a textile substrate. A feed line couples the radio signal to the patch. Furthermore, the efficiency of radiation from the patch is directly related to the orientation of the fibers or carbon nanotubes in the anisotropic material relative to the orientation of the feed line. Dual polarized radiators can be constructed from two orthogonal layers of CNT patches fed with correspondingly orthogonal feed lines.
Abstract:
An electronic device in the form a two-dimensional array of nanopillars extending generally normal to a substrate is provided. The nanopillars are made from a paraelectric or superparaelectric material. In addition, a linear dielectric medium is located between individual nanopillars. A two-dimensional array of paraelectric or superparaelectric nanopillars and a linear dielectric medium form the effective dielectric medium of a paraelectric or superparaelectric varactor. In some instances, the nanopillars are cylindrical nanopillars that have an average diameter and/or average height/length between 1-300 nanometers. In other instances, the nanopillars are quasi-nanoparticles that form self-aligned nano-junctions. In addition, each of the nanopillars has a single paraelectric or superparaelectric dipole domain therewithin. As such, each of the nanopillars can be void of crystallographic defects, polycrystallinity, interactions between ferroic domains, and defects due to ferroic domain walls.
Abstract:
According to embodiments, an optically-actuated mechanical device comprises at least one deformable section formed of: an element including an intrinsic stress differential or gradient, the stress tending to urge deformation of one portion relative to another portion; and an optically-sensitive material which is configured to (i) initially prevent deformation of the device, and (ii) upon sufficient heating by absorbing optical energy allows the element to deform. The devices may be incorporated into various devices and apparatuses for select, non-contact actuation using only optical energy, for example, via light, from one or more lasers. Methods for fabricating and actuating such devices are also disclosed.
Abstract:
A method and apparatus for cognitive non-linear radar processing comprising identifying one or more frequency bands of interest, passively scanning, using a non-linear radar (NR), the one or more frequency bands of interest to determine whether interference signals are occupying the one or more bands, transmitting radar waveforms and receiving radar waveform responses at one or more frequency bands determined to be free of interference, determining a likelihood of a target being present or not based on whether the received waveform responses match stored waveform responses for non-linear targets, and modifying waveform parameters of the transmitted radar waveform when the received waveform responses match the stored waveform responses, so as to transmit a modified radar waveform.