Abstract:
The present disclosure generally relates to the use of a self-propelled underwater vehicle for seismic data acquisition. The self-propelled underwater vehicle is adapted to gather seismic data from the seafloor and transmit such data to a control vessel. The self-propelled underwater vehicle may be redeployed to several seafloor locations during a seismic survey. Methods for real-time modeling of a target zone and redeployment of the self-propelled underwater vehicle based on the modeling are also described.
Abstract:
The present disclosure is directed to a MEMS-based rotation sensor for use in seismic data acquisition and sensor units having same. The MEMS-based rotation sensor includes a substrate, an anchor disposed on the substrate and a proof mass coupled to the anchor via a plurality of flexural springs. The proof mass has a first electrode coupled to and extending therefrom. A second electrode is fixed to the substrate, and one of the first and second electrodes is configured to receive an actuation signal, and another of the first and second electrodes is configured to generate an electrical signal having an amplitude corresponding with a degree of angular movement of the first electrode relative to the second electrode. The MEMS-based rotation sensor further includes closed loop circuitry configured to receive the electrical signal and provide the actuation signal. Related methods for using the MEMS-based rotation sensor in seismic data acquisition are also described.
Abstract:
Systems and methods for compensating for spatial and slowness or angle blurring of plane-wave reflection coefficients in imaging. A wave field may be determined at a reference depth proximate to a reflector for a shot record. A receiver-side blurring function may be determined at the reference depth. An aggregate blurring function may be constructed based at least partially on the source wave field and the receiver-side blurring function. A plane-wave reflection coefficients may be determined based at least partially on the aggregate blurring function.
Abstract:
Computing systems and methods for processing collected data are disclosed. In one embodiment, a method for iteratively separating a simultaneous-source dataset is provided, wherein the simultaneous-source dataset is used as an input dataset for a first iteration of simultaneous-source separation. The input dataset includes a plurality of shots that include data corresponding to a plurality of source activations. The method of iteratively separating the input dataset includes generating simulated simultaneous shots based on shots separated in the input dataset; and forming an output dataset based on the separated simultaneous shots and the simultaneous-source dataset, wherein the output dataset is configured for use as the input dataset for the next iteration of separating the simultaneous-source dataset.
Abstract:
Based at least in part on one or more characteristics relating to a measurement system, a polygonal space in a Fourier domain is determined. A representation of a function that is bandlimited within the polygonal space is computed.
Abstract:
Various implementations described herein are directed to a seismic survey using an augmented reality device. In one implementation, a method may include determining current location data of an augmented reality (AR) device in a physical environment. The method may also include receiving placement instructions for a first seismic survey equipment in the physical environment based on the current location data. The method may further include displaying the placement instructions in combination with a view of the physical environment on the AR device.
Abstract:
Propagation of wavefields are simulated along paths in a survey environment, where the simulated propagation includes an influence of a reflection at an interface that causes ghost data in measured survey data. Deghosting of the measured survey data is performed using the simulated wavefields.
Abstract:
A method of analysing seismic data from a geological volume is provided. The geological volume is divided into a plurality of voxels. For each voxel a respective neighbourhood is defined which includes that voxel and a predetermined arrangement of neighbouring voxels. For each voxel, the respective normal vectors of a seismic attribute vector field derived from the seismic data are calculated. For each voxel, a respective local structure tensor based on the normal vectors of the voxels of the respective neighbourhood is calculated. For each voxel, the value of an expression which includes one or more of the eigenvalues (λ1, λ2, λ3) of the respective local structure tensor is calculated. The method can be used for seismic surveying, or to manage operation of or drilling of a subterranean well.
Abstract:
A sensor device includes an elongated housing containing particle motion sensors spaced apart along a longitudinal axis of the elongated housing, where the elongated housing has a length that is greater than a width of the elongated housing. A second portion includes communication circuitry to communicate over a communication medium, the second portion coupled to the elongated housing and having a width that is greater than the width of the elongated housing.
Abstract:
Computing systems, methods, and computer-readable media for improving data quality are disclosed. In some embodiments, a method of quality checking seismic interpolation data is provided, where the method includes obtaining first measured seismic data acquired by a first plurality of seismic sensors; obtaining second measured seismic data acquired by a second plurality of seismic sensors; interpolating, from the first measured seismic data, respective seismic data values at locations corresponding to respective sensors in the second plurality of seismic sensors; calculating a plurality of interpolation differences, where respective interpolation differences are calculated as numerical differences between respective interpolated seismic data values corresponding to respective sensor locations in the second plurality of sensors and respective measured seismic data values corresponding to respective sensors in the first plurality of sensors; and calculating an average interpolation difference using at least the plurality of interpolation differences.