Abstract:
A method of allocating control information in a wireless communication system is provided. The method includes: allocating essential control information of a first system to a first sub-frame in a frame including a plurality of sub-frames each of which comprises a plurality of orthogonal frequency-division multiplexing (OFDM) symbols; and allocating essential control information of a second system to an nth sub-frame in a fixed position from the first sub-frame (where n is an integer satisfying n>1). Accordingly, in a frame supporting heterogeneous systems, essential control information can be fixedly allocated to a specific position while maintaining the number of system switching points, at which switching occurs between the systems, to one even if a radio resource allocation amount changes between the systems, and thus the essential control information that must be received by all user equipments can be effectively provided without the increase of overhead.
Abstract:
The present invention relates to a wireless communication system. More particularly, the present invention relates to a method and to an apparatus for transmitting an SRS in a multi-antenna system. The method comprises the steps of: acquiring specific information for discriminating a first antenna group and a second antenna group from among a plurality of antennas, wherein said first antenna group includes one or more antennas which are set to a turned-on state to perform communication with a base station, and said second antenna group includes one or more other antennas which are set to a turned-off state; transmitting an SRS to the base station if a predetermined condition is satisfied, under the condition that the second antenna group is set to the turned-off state; and setting the second antenna group to a turned-off state after the transmission of the SRS.
Abstract:
A method and a base station are described for transmitting a signal. The base station transmits control information to a relay node through a relay-physical downlink control channel (R-PDCCH), and transmits a data to the relay node through a relay-physical downlink shared channel (R-PDSCH). When a number of transmission layers of the R-PDSCH is 2 or more than 2, reference signals, among a plurality of reference signals, transmitted by a specific one of a plurality of antenna ports are used, in the relay node, for a demodulation of the control information.
Abstract:
A method and base station for receiving a reference signal in a wireless communication system are discussed. The method according to one embodiment includes transmitting a cell-specific group hopping parameter to a plurality of user equipments (UEs). The cell-specific group hopping parameter is used to disable a group hopping. The method according to the embodiment further includes transmitting a cell-specific sequence hopping parameter to the plurality of UEs. The cell-specific sequence hopping parameter is used to enable a sequence hopping. The method according to the embodiment further includes transmitting a UE-specific sequence group hopping (SGH) parameter to a certain UE. The UE-specific SGH parameter is used to disable the sequence hopping. The method according to the embodiment further includes receiving a reference signal, which is generated based on a base sequence number. The base sequence number within the base sequence group is determined by the UE-specific SGH parameter.
Abstract:
A method for receiving Acknowledgement/Negative Acknowledgement (ACK/NACK) information at a base station in a wireless communication system. The method according to one embodiment includes transmitting a plurality of transport blocks through a plurality of downlink carriers to a user equipment. Each of the plurality of downlink carriers carries two or more transport blocks. The method according to the embodiment further includes, after transmitting the plurality of transport blocks, receiving the ACK/NACK information through one uplink carrier from the user equipment. The ACK/NACK information includes ACK/NACK bits corresponding to the plurality of transport blocks, and the ACK/NACK bits are concatenated in accordance with an index order of the downlink carriers and an index order of the two or more transport blocks associated with each of the downlink carriers.
Abstract:
A method and an apparatus for transmitting a reference signal in a multiple antenna system are provided. The method includes transmitting a first reference signal based on a first sequence through a first antenna group, and transmitting a second reference signal based on a second sequence through a second antenna group, wherein the first reference signal and the second reference signal are transmitted through a same radio resource.
Abstract:
The present invention relates to a wireless communication system. More particularly, the present invention relates to a method and to an apparatus for transmitting an SRS in a multi-antenna system. The method comprises the steps of: acquiring specific information for discriminating a first antenna group and a second antenna group from among a plurality of antennas, wherein said first antenna group includes one or more antennas which are set to a turned-on state to perform communication with a base station, and said second antenna group includes one or more other antennas which are set to a turned-off state; transmitting an SRS to the base station if a predetermined condition is satisfied, under the condition that the second antenna group is set to the turned-off state; and setting the second antenna group to a turned-off state after the transmission of the SRS.
Abstract:
A method and apparatus for multiplexing reference signals in a predetermined number of Code Division Multiplexing (CDM) groups to balance power across Orthogonal Frequency Division Multiplexing (OFDM) symbols are disclosed. In a wireless communication system, orthogonal sequences used for spreading the reference signals are allocated such that the order of orthogonal sequences allocated to a subcarrier of one CDM group has a predetermined offset with respect to the order of orthogonal sequences allocated to a subcarrier of another CDM group, adjacent to the subcarrier of the one CDM group.
Abstract:
The present invention relates to a method for transmitting a data demodulation reference signal in a radio mobile communication system. The method comprises: a step for generating a sub-frame including the data demodulation reference signal, and a step for transmitting the generated sub-frame. The 1st and 2nd demodulation reference signal pattern groups include plural demodulation signal patterns orthogonal to each other, and are differentiated from each other with regard to time-frequency resources. In the data demodulation reference signal, demodulation reference signal patterns which are respectively orthogonal to each other M (M≦N) and N-M times are respectively included in the 1st and 2nd demodulation reference signal pattern groups if the rank is N.
Abstract:
A method of allocating control information in a wireless communication system is provided. The method includes: allocating essential control information of a first system to a first sub-frame in a frame including a plurality of sub-frames each of which comprises a plurality of orthogonal frequency-division multiplexing (OFDM) symbols; and allocating essential control information of a second system to an nth sub-frame in a fixed position from the first sub-frame (where n is an integer satisfying n>1). Accordingly, in a frame supporting heterogeneous systems, essential control information can be fixedly allocated to a specific position while maintaining the number of system switching points, at which switching occurs between the systems, to one even if a radio resource allocation amount changes between the systems, and thus the essential control information that must be received by all user equipments can be effectively provided without the increase of overhead.