Abstract:
Methods, systems, and devices for wireless communication using various patterns of data and reference signals are described. For example, in a system that supports operation using different duration transmission time intervals (TTIs), a base station may initiate communication with a user equipment (UE) or between two UEs, and UEs may communicate with the base station or with one another using an indicated pattern of data and reference signals. The base station may send a downlink control message indicating a transmission pattern selected from a set of patterns. UEs may identify the pattern based on the indicator and decode a sequence of data and reference signals based on the pattern. In some examples, the sequence may include a set of TTIs, which may have a shorter duration than other TTIs.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) and a base station may use low latency communications to improve the throughput of a wireless link. To facilitate efficient low latency communication, the UE may send UE-initiated CSI reports in addition to periodic and base station-initiated reports. For example, the UE may, in various examples, send UE-initiated CSI reports using contention based spectrum, using a request-to-transmit, or using a CSI differential (i.e., an indicator of a change in channel conditions). The base station may schedule different UEs for uplink low latency communication by providing resources to each UE for CSI and scheduling requests (SRs) using coherent or non-coherent uplink transmissions. The CSI and SR may also be combined with uplink feedback.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may operate in a system that supports operation with transmission time intervals (TTIs) of different durations. The UE may monitor for a grant during a first TTI and may determine the communication direction of a second TTI based on a received grant. The UE may re-determine the communication direction of the second TTI based, for example, on an explicit indication. In some examples, the UE may adapt uplink scheduling timing based on the indicator. In some examples, a UE may communicate in one direction during a TTI of a first duration and may communicate in a different direction during a TTI of the second duration that is within the TTI of the first duration.
Abstract:
Coordinated wireless communications using multiple transmission time intervals (TTIs) are described. Multiple TTIs may include a first TTI and a second TTI, the second TTI having a shorter duration than the first TTI. One or more parameters may be determined for communications using the first TTI and the second TTI. A first parameter of the determined parameters for the second TTI may be associated or linked with a corresponding parameter of the first TTI, and communications using the first TTI or the second TTI may be performed using the first parameter. Wireless network nodes using the first TTI may form a CoMP cooperating set, and wireless network nodes using the second TTI may for another CoMP cooperating set, and the first parameter may be applied to each of the CoMP cooperating sets.
Abstract:
Techniques are described for wireless communication. In one method, a positioning reference signal (PRS) may be generated. The PRS may be configured in at least one downlink subframe among a plurality of downlink subframes. The PRS may be transmitted in the at least one downlink subframe using an unlicensed radio frequency spectrum band.
Abstract:
Various aspects described herein relate to communicating in a wireless network. A resource grant comprising an indicator of whether to transmit a demodulation reference signal (RS) for an uplink control channel or an uplink data channel can be received from a network entity. It can be determined whether to transmit the RS in at least one transmission time interval (TTI) based at least in part on the indicator.
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may allocate resources for communication with a user equipment (UE). The resources may include one or more subframes, and each subframe may include one or more shortened transmission time intervals (sTTIs). Each sTTI may be assigned a transmission direction according to a time division duplex (TDD) pattern. Based on traffic needs and/or interference from other UEs and/or base stations, the base station may determine to modify the TDD pattern used for communication. Accordingly, a base station may transmit an indicator in a control message or control region of a TTI or sTTI, to indicate to users that a transmission direction of an sTTI in the TDD pattern is being changed. Subsequently, a user may communicate with the base station according to the reconfigured TDD pattern.
Abstract:
Aspects relate to time-interleaving of code block groups (CBGs) of a transport block. Some deployments can include configuring a downlink transmission to a scheduled entity that overlaps in time with an uplink transmission from the scheduled entity when the scheduled entity is operating in a full-duplex mode. CBGs may be time-interleaved to accommodate and/or mitigate interference between downlink and uplink transmissions. The modulation and coding scheme (MCS) of the transport block can further be adjusted to accommodate and/or mitigate interference between the downlink and uplink transmissions. Techniques discussed herein can be used at various nodes, components, and/or devices in a wireless network (e.g., UEs, BSs, CUs, RUs, DUs, etc.). Other aspects, features, and embodiments are also claimed and described.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may determine separate uplink (UL) power limitations for multiple transmission time interval (TTI) durations based on distinct power control parameters. In some cases, an adjustment factor or a power backoff may be applied to communications using one TTI duration to ensure that total transmit power does not exceed a threshold. The UE and the serving base station may also identify one or more demodulation reference signal (DMRS) windows. UL data transmissions may be demodulated based on a DMRS sent during the same window. Transmit power control (TPC) commands may be applied at the beginning of each window. However, if an UL transmission is scheduled at the beginning of the window, the UE may wait until a DMRS transmission or until no more transmissions are scheduled for the window before applying the TPC adjustment.
Abstract:
Methods, systems, and devices for wireless communications are described. A frequency band configuration for a full-duplex slot may be indicated, where a frequency band configuration may include one or more downlink frequency bands and one or more uplink frequency bands. In some cases, a frequency band configuration may also include one or more guard bands. A user equipment (UE) may determine the frequency band configuration for a full-duplex slot based on a frequency configuration indication, which may include an index for a table of frequency band configurations, one or more bitmaps, or respective start and length indications for each frequency band. A frequency band configuration may apply to one slot or to multiple slots.