Abstract:
The disclosure provides for interference mitigation for wireless signals in unlicensed spectrum. A wireless device may receive a combined signal including a first radio access technology (RAT) signal and a second RAT signal. The wireless device may generate, using a first RAT receiver in a first processing path, a channel estimate for the first RAT signal based on a previously decoded signal of the first RAT. The wireless device may reduce interference to the second RAT signal caused by the first RAT signal, in a second processing path, using the channel estimate. The wireless device may further decode the second RAT signal. The wireless device may remodulate the decoded signal using a transmitter to generate a remodulated second RAT signal. The remodulated second RAT signal may be canceled from the combined signal. The wireless device may decode a remaining portion of the combined signal including the first RAT signal.
Abstract:
A wireless device may identify a first subband in an unlicensed radio frequency spectrum band used to communicate control traffic. The wireless device may identify a second subband in the unlicensed radio frequency spectrum band used to communicate data traffic. The first subband and the second subband may be different. The wireless device may reserve the first subband for a first duration of time for a plurality of wireless devices. The reservation may be based at least in part on an enhanced self-clear-to-send (self-CTS) transmitted over the first subband.
Abstract:
A method of wireless communication by a receiver, includes predicting, with an artificial neural network, at each data block of a set of data blocks, a least complex set of demodulator parameters that will achieve a goal, based on features of a data block expected to be received. The method also includes dynamically selecting the least complex set of demodulator parameters, from multiple sets of demodulator parameters, based on the features of the data block expected to be received. The selecting occurring to prevent degradation of demodulation performance for each data block with the selected set of demodulator parameters for the data block, with respect to a more complex set of demodulator parameters.
Abstract:
Methods, systems, and devices for wireless communications are described. Generally, the described techniques provide for adapting or considering a receiver gain when using super-high order modulations for data transmissions. In one aspect, a network entity may transmit a tracking reference signal (TRS) in a first slot adjacent in time to a second slot allocated for one or more data transmissions associated with a high order modulation. A user equipment (UE) may receive the TRS and may adjust a receiver gain based on the TRS before receiving the one or more data transmissions associated with the high order modulation in the second slot. In another aspect, a UE may indicate (e.g., based on a receiver gain at the UE) a type of slot (e.g., shortened slot) or a maximum number of slots in which a network entity may transmit data transmissions with a high modulation order.
Abstract:
A method of wireless communication at a user equipment (UE) includes receiving a first collision report (s), each first collision report indicating at least one first monitored subset of sidelink resources that were monitored by a remote sidelink UE. The method also includes transmitting a second collision report indicating allocation collisions detected by the UE on a second monitored subset(s) of sidelink resources. Each of the second monitored subset(s) of sidelink resources differing from each of the first monitored subset(s) of sidelink resources indicated in the received first collision report(s). The second collision report further comprising an indication of each of the second monitored subset(s) of sidelink resources.
Abstract:
Methods, systems, and devices for wireless communications are described. The method may include a user equipment (UE) transmitting, to a base station, signaling indicating a capability of the UE to utilize a demodulation reference signal (DMRS) for channel state information (CSI) reporting. Upon receiving the signaling, the base station may transmit the DMRS and the UE may update a parameter of a CSI report in response to the received DMRS. The UE may then transmit the CSI report to the base station and the base station may utilize the CSI report for subsequent communications with the UE.
Abstract:
A device is configured to generate prediction data for the picture, wherein the prediction data for the picture comprises predictions of blocks of the picture based at least in part on one or more previously reconstructed pictures of the video data; generate encoded video data based on the prediction data for the picture, wherein the encoded video data includes transform blocks that comprises transform coefficients; scale bits of the transform coefficients of the transform blocks based on reliability values for bit positions; generate error-corrected encoded video data using the error correction data to perform an error correction operation on the scaled bits of the transform coefficients of the transform blocks; and reconstruct the picture based on the error-corrected encoded video data.
Abstract:
A device generates an estimated size of encoded versions of one or more pictures of video data prior to generating the encoded versions of the one or more pictures. A physical layer of a radio system of the device is configured to send a message to a wireless base station. The message indicates a size value based on the estimated size of the encoded versions of the one or more pictures. The physical layer of the radio system receives an uplink grant notification in response to the message. Based on the uplink grant notification, the physical layer of the radio system sends packets to the wireless base station containing the encoded versions of the one or more pictures.
Abstract:
Methods, systems, and devices for wireless communications are described. A first wireless device may transmit, to a second wireless device, a first indication of a capability to selectively configure activation states for a set of antenna elements of an antenna array of the first wireless device, and of parameter values that indicate a structure of the antenna array. The first wireless device may then receive, from the second wireless device in response to the transmitted first indication, a second indication for the first wireless device to modify an activation state of one or more antenna elements of the set of antenna elements. The first wireless device may subsequently identify the activation state of the one or more antenna elements based on the received second indication, and communicate with the second wireless device using the antenna array according to the identified activation state of the one or more antenna elements.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for early termination of decoding attempts, including decoding attempts associated with physical downlink control channel (PDCCH) candidates that are encoded using a rateless code. In some aspects, a transmitting device may encode a message using a rateless code associated with a cumulative encoding of various portions of the message, and using a device identifier or group identifier as an input to the encoding. Similarly, a receiving device may receive an encoded signal over candidate resources and may attempt to decode the signal in accordance with the rateless code and using a device identifier or a group identifier as an input to the decoding. As such, intended or non-intended receiving device may be able to evaluate whether to proceed with a decoding attempt or to terminate a decoding attempt at a relatively early stage.