Abstract:
To increase the amount of lithium ions that can be received in and released from a positive electrode active material to achieve high capacity and high energy density of a secondary battery. A lithium manganese oxide particle includes a first region and a second region. The valence number of manganese in the first region is lower than the valence number of manganese in the second region. The lithium manganese oxide has high structural stability and high capacity characteristics.
Abstract:
A triarylamine derivative represented by a general formula (G1) given below is provided. Note that in the formula, Ar represents either a substituted or unsubstituted phenyl group or a substituted or unsubstituted biphenyl group; α represents a substituted or unsubstituted naphthyl group; β represents either hydrogen or a substituted or unsubstituted naphthyl group; n and m each independently represent 1 or 2; and R1 to R8 each independently represent any of hydrogen, an alkyl group having 1 to 6 carbon atoms, or a phenyl group.
Abstract translation:提供由下述通式(G1)表示的三芳基胺衍生物。 注意,在该式中,Ar表示取代或未取代的苯基或取代或未取代的联苯基; α表示取代或未取代的萘基; &bgr 表示氢或取代或未取代的萘基; n和m各自独立地表示1或2; R 1〜R 8各自独立地表示氢,碳原子数1〜6的烷基或苯基中的任一个。
Abstract:
In a sealing method of a top-emission organic light emitting element, in the case of using a method of filling with a sealing agent between a substrate mounted with pixels and an opposed substrate, the organic light-emitting element is degraded by ultraviolet rays when irradiation of the ultraviolet rays is performed toward the pixels in order to achieve ultraviolet curing of the sealing agent filling on the pixels. It is an object of the present invention to propose a method for avoiding this phenomenon to provide an organic light-emitting device with superior stability. In order for a sealing agent 13 filling on a pixel portion 14 to have a larger absorbance to ultraviolet rays, an ultraviolet-absorbent material is dispersed in a sealing agent to make an adjustment so that the absorbance of ultraviolet absorption wavelength of 400 nm or less becomes 1 or more.
Abstract:
Provided is a novel organic compound that is used as a host material in which a light-emitting substance is dispersed. The organic compound is represented by General Formula (G1). In the formula, A represents a substituted or unsubstituted dibenzofuran-diyl group, a substituted or unsubstituted dibenzothiophene-diyl group, a substituted or unsubstituted N-aryl-9H-carbazole-diyl group, or a substituted or unsubstituted N-alkyl-9H-carbazole-diyl group; Ar1 and Ar2 each independently represent a single-bond or a substituted or unsubstituted arylene group; R11 to R19 and R21 to R29 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms; X1 and X2 each independently represent a carbon atom or a nitrogen atom; and the carbon atom is bonded to hydrogen, an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 13 carbon atoms.
Abstract:
A novel heterocyclic compound that can be used as a host material in which a light-emitting substance is dispersed. A light-emitting element having a long lifetime. A heterocyclic compound in which a substituted or unsubstituted dibenzo[f,h]quinoxalinyl group is bonded to a substituted or unsubstituted arylene group having 6 to 25 carbon atoms which is bonded to any one of the 8-11 positions of a substituted or unsubstituted benzo[b]naphtho[1,2-d]furan skeleton.
Abstract:
Objects of the present invention are to provide novel anthracene derivatives and novel organic compounds; a light-emitting element that has high emission efficiency; a light-emitting element that is capable of emitting blue light with high luminous efficiency; a light-emitting element that is capable of operation for a long time; and a light-emitting device and an electronic device that have lower power consumption. An anthracene derivative represented by a general formula (1) and an organic compound represented by a general formula (17) are provided. A light-emitting element that has high emission efficiency can be obtained by use of the anthracene derivative represented by the general formula (1). Further, a light-emitting element that has a long life can be obtained by use of the anthracene derivative represented by the general formula (1).
Abstract:
A nonaqueous solvent that includes an ionic liquid and has at least one of the following characteristics: high lithium ion conductivity, high lithium ion conductivity in a low temperature environment, high heat resistance, a wide available temperature range, a low freezing point (melting point), low viscosity, and the like. The nonaqueous solvent includes an ionic liquid and a fluorinated solvent. The ionic liquid contains an alicyclic quaternary ammonium cation which has a substituent and a counter anion to the alicyclic quaternary ammonium cation which has the substituent.
Abstract:
The present invention is directed to a light emitting device structured so as to increase the amount of light which is taken out in a certain direction after emitted from a light emitting element, and a method of manufacturing this light emitting device. An upper end portion of an insulating material 19 that covers an end portion of a first electrode 18 is fowled to have a curved surface having a radius of curvature, a second electrode 23a is formed to have a slant face as going from its center portion toward its end portion along the curved surface. Light emitted from a light emitting layer comprising an organic material 20 that is formed on the second electrode 23a is reflected at the slant face of the second electrode 23a to increase the total amount of light taken out in the direction indicated by the arrow in FIG. 1A.
Abstract:
Provided are a heterocyclic compound which emits blue light and is represented by General Formula (G1) below, and a light-emitting element, a light-emitting device, an electronic device and a lighting device which are formed using the heterocyclic compound represented by General Formula (G1) below. The use of the heterocyclic compound represented by General Formula (G1) makes it possible to provide a light-emitting element which has high emission efficiency, and also a light-emitting device, an electronic device and a lighting device which have reduced power consumption.
Abstract:
Provided is a light-emitting element having a light-emitting layer which contains at least a host material and a plurality of guest materials, where the host material has a lower T1 level than that of at least one of the plurality of guest materials. The emission of the one of the plurality of guest materials exhibits a multicomponent decay curve, and the lifetime thereof is less than or equal to 15 μsec, preferably less than or equal to 10 μsec, more preferably less than or equal to 5 μsec, where the lifetime is defined as a time for the emission to decrease in intensity to 1/100 of its initial intensity.