Abstract:
A nonaqueous solvent that includes an ionic liquid and has at least one of the following characteristics: high lithium ion conductivity, high lithium ion conductivity in a low temperature environment, high heat resistance, a wide available temperature range, a low freezing point (melting point), low viscosity, and the like. The nonaqueous solvent includes an ionic liquid and a fluorinated solvent. The ionic liquid contains an alicyclic quaternary ammonium cation which has a substituent and a counter anion to the alicyclic quaternary ammonium cation which has the substituent.
Abstract:
One object is to provide a power storage device including an electrolyte using a room-temperature ionic liquid which includes a univalent anion and a cyclic quaternary ammonium cation having excellent reduction resistance. Another object is to provide a high-performance power storage device. A room-temperature ionic liquid which includes a cyclic quaternary ammonium cation represented by a general formula (G1) below is used for an electrolyte of a power storage device. In the general formula (G1), one or two of R1 to R5 are any of an alkyl group having 1 to 20 carbon atoms, a methoxy group, a methoxymethyl group, and a methoxyethyl group. The other three or four of R1 to R5 are hydrogen atoms. A− is a univalent imide anion, a univalent methide anion, a perfluoroalkyl sulfonic acid anion, tetrafluoroborate (BF4−), or hexafluorophosphate (PF6−).
Abstract:
One object is to provide a power storage device including an electrolyte using a room-temperature ionic liquid which includes a univalent anion and a cyclic quaternary ammonium cation having excellent reduction resistance. Another object is to provide a high-performance power storage device. A room-temperature ionic liquid which includes a cyclic quaternary ammonium cation represented by a general formula (G1) below is used for an electrolyte of a power storage device. In the general formula (G1), one or two of R1 to R5 are any of an alkyl group having 1 to 20 carbon atoms, a methoxy group, a methoxymethyl group, and a methoxyethyl group. The other three or four of R1 to R5 are hydrogen atoms. A− is a univalent imide anion, a univalent methide anion, a perfluoroalkyl sulfonic acid anion, tetrafluoroborate (BF4−), or hexafluorophosphate (PF6−).
Abstract:
A nonaqueous electrolyte of the present invention includes an ionic liquid including a first alicyclic quaternary ammonium cation having one or more substituents, a second alicyclic quaternary ammonium cation having an alicyclic skeleton that is the same as an alicyclic skeleton of the first alicyclic quaternary ammonium cation, and a counter anion to the first alicyclic quaternary ammonium cation and the second alicyclic quaternary ammonium cation and an alkali metal salt. In the second alicyclic quaternary ammonium cation, one of substituents bonded to a nitrogen atom in the alicyclic skeleton is a substituent including a halogen element. In the ionic liquid, the amount of a salt including the second alicyclic quaternary ammonium cation is less than or equal to 1 wt % per unit weight of the ionic liquid, or is less than or equal to 0.8 wt % per unit weight of the nonaqueous electrolyte.
Abstract:
A power storage device with reduced initial irreversible capacity is provided. The power storage device includes a positive electrode including a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte solution. In the negative electrode active material layer, the content percentage of a carbon material with an R value of 1.1 or more is less than 2 wt %. The R value refers to a ratio of a peak intensity I1360 to a peak intensity I1580 (I1360/I1580). The peak intensity I1360 and the peak intensity I1580 are observed by Raman spectrometry at a Raman shift of 1360 cm−1 and a Raman shift of 1580 cm−1, respectively. The electrolyte solution contains a lithium ion and an ionic liquid composed of an organic cation and an anion.
Abstract:
A power storage device with reduced initial irreversible capacity is provided. The power storage device includes a positive electrode including a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte solution, in the negative electrode active material layer, the content percentage of a carbon material with an R value of 1.1 or more is less than 2 wt %, The R value refers to a ratio of a peak intensity I1360 to a peak intensity I1580 (I1360/I1580). The peak intensity I1360 and the peak intensity I1580 are observed by Raman spectrometry at a Raman shift of 1360 cm−1 and a Raman shift of 1580 cm−1, respectively. The electrolyte solution contains a lithium ion and an ionic liquid composed of an organic cation and an anion.
Abstract:
An ionic liquid having high electrochemical stability and a low melting point. An ionic liquid represented by the following general formula (G0) is provided. In the general formula (G0), R0 to R5 are individually any of an alkyl group having 1 to 20 carbon atoms, a methoxy group, a methoxymethyl group, a methoxyethyl group, and a hydrogen atom, and A− is a univalent imide-based anion, a univalent methide-based anion, a perfluoroalkyl sulfonic acid anion, tetrafluoroborate, or hexafluorophosphate.
Abstract:
An ionic liquid having high electrochemical stability and a low melting point. An ionic liquid represented by the following general formula (G0) is provided. In the general formula (G0), R0 to R5 are individually any of an alkyl group having 1 to 20 carbon atoms, a methoxy group, a methoxymethyl group, a methoxyethyl group, and a hydrogen atom, and A− is a univalent imide-based anion, a univalent methide-based anion, a perfluoroalkyl sulfonic acid anion, tetrafluoroborate, or hexafluorophosphate.
Abstract:
A power storage device with reduced initial irreversible capacity is provided. The power storage device includes a positive electrode including a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte solution. In the negative electrode active material layer, the content percentage of a carbon material with an R value of 1.1 or more is less than 2 wt %. The R value refers to a ratio of a peak intensity I1360 to a peak intensity I1580 (I1360/I1580). The peak intensity I1360 and the peak intensity I1580 are observed by Raman spectrometry at a Raman shift of 1360 cm−1 and a Raman shift of 1580 cm−1, respectively. The electrolyte solution contains a lithium ion and an ionic liquid composed of an organic cation and an anion.
Abstract:
An ionic liquid having high electrochemical stability and a low melting point. An ionic liquid represented by the following general formula (G0) is provided. In the general formula (G0), R0 to R5 are individually any of an alkyl group having 1 to 20 carbon atoms, a methoxy group, a methoxymethyl group, a methoxyethyl group, and a hydrogen atom, and A− is a univalent imide-based anion, a univalent methide-based anion, a perfluoroalkyl sulfonic acid anion, tetrafluoroborate, or hexafluorophosphate.