Abstract:
Wireless communication receiver with hybrid equalizer and RAKE receiver. The receiver compares performance of the system for RAKE only and RAKE in combination with equalizer estimates. The receiver enables or disables the equalizer accordingly.
Abstract:
A system, method, and receiver for receiving radio signals modulated according to different radio communication standards. Radio signals are received and downconverted to an intermediate frequency (IF) signal. An A/D-converter samples the IF signal at a sampling rate and digitizes the sampled signal into a digital signal. A channelizer filters out at least two modulated channels from the digital signal. A first ago channel is modulated according to a Time Division Multiple Access (TDMA) standard, and a second channel is modulated according to a Code Division Multiple Access (CDMA) standard. A first demodulating unit demodulates the TDMA channel, and a second demodulating unit demodulates the CDMA channel. Each of the demodulating units detects and, when needed, resamples each of the modulated channels individually, and delivers a corresponding demodulated channel. A Frequency Division Multiple Access (FDMA) channel may also be received and processed.
Abstract:
Disclosed herein is a method of receiving a spread-spectrum signal in a radio communication terminal device having a plurality of demodulators for demodulating a received spread-spectrum signal, comprising the steps of detecting when at least one of a plurality of demodulators is temporarily unable to properly demodulate the received spread-spectrum signal, determining whether or not there is a demodulator which is not being used other than the at least one of the demodulators, and continuing a demodulating process of the at least one of the demodulators, if there is a demodulator which is not being used. Thus, according to the present invention, the time in which the demodulator is unlocked is minimized, and a stable, high-quality signal can be received.
Abstract:
A code-division-multiple-access (CDMA) system employing spread-spectrum modulation. The CDMA system has a base station (BS), and a plurality of subscriber units. The signals transmitted between the base station and subscriber unit use spread-spectrum modulation. The improvement method for adaptive reverse power control (APC) from a subscriber unit (SU) to a base station (BS), comprises the steps of sending from the subscriber unit, using spread-spectrum modulation, a SU-spreading code on a reverse channel. The base station despreads the SU-spreading code on the reverse channel as a despread signal, determines a first power level Pd which includes power of the despread signal plus noise and a second power level PN, which includes despread-noise power. The base station determines a first error signal e1, from the first power level Pd, the second power level PN, and a required signal-to-noise ratio SNRREQ for service type, and a second error signal e2, from a measure of total received power Prt at the base station, and an automatic gain control (AGC) set point Po. The base station forms a combined error signal from the first error signal e1, the second error signal e2, a first weight a1 and a second weight a2, and hard limits the combined error signal to form a single APC bit. The APC bit is transmitted to the subscriber unit. In response to the APC bit, the subscriber adjusts transmitter power to the base station.
Abstract:
A spread spectrum signal having an associated code is tracked at a receiver. A plurality of components of the spread spectrum signal are despread using the associated code. Each of the plurality of components has a different code phase than all others of the plurality of code phases. Each of the plurality of components is weighted based on a phase difference between that component and a center code phase associated with the plurality of components. A tracking error is determined based on the weighted components.
Abstract:
A code transmitted in a wireless format is to be detected. A power level associated with the code is determined. The determined power level is compared with a plurality of thresholds. A test statistic is increased or decreased based on which of the thresholds that the determined power level falls within. If the test statistic exceeds an acceptance threshold, the code is deemed acquired. If the test statistic is below a dismissal threshold, the code is deemed not present. If the test statistic does not exceed the acceptance threshold and the test statistic is not below the dismissal threshold, the testing for the code is repeated.
Abstract:
System and method for efficient detecting of direct sequence spread spectrum signals using a searcher with batched processing. A preferred embodiment comprises a controller (such as the MCU 310) that writes sets of search parameters to a memory (such as the memory 315) to specify a group of hypotheses. A searcher (such as the searcher 305) reads the sets of search parameters from the memory and generates the groups of hypotheses from the sets of search parameters. The searcher then assigns the hypotheses to correlators and tests each of the hypotheses. Results from the testing can be written back to the memory.
Abstract:
A method of processing data based on programmed instructions includes referencing a number of locations in memory by forming addresses and correct buffer mappings corresponding to separate buffers in the plurality of buffers, and communicating data from the referenced locations in memory to a processing unit. The processing unit concurrently receives inputs from the separate buffers in the plurality of buffers and outputs to another buffer in the plurality of buffers.
Abstract:
The present invention is related to a rake receiver for searching, tracking and combining multipath signals in a spread spectrum transmission, characterised in that it further comprises a plurality of generic fingers (11) arranged to perform any of functions selected from the group consisting of searching, tracking and combining a multipath signal.
Abstract:
A base station for controlling transmission power during the establishment of a communication channel utilizes the reception of a short code during initial power ramp-up. The short code is a sequence for detection by the base station which has a much shorter period than a conventional access code. The ramp-up starts from a power level that is lower than the required power level for detection by the base station. The power of the short code is quickly increased until the signal is detected by the base station. Once the base station detects the short code, it transmits an indication that the short code has been detected.