Abstract:
A liquid crystal device (LCD) includes a first substrate; a second substrate coupled to the first substrate; a plurality of scan lines and a plurality of data lines arranged over the first substrate, the scan lines intersecting the data lines to define pixel areas; thin film transistors (TFTs) over the first substrate adjacent intersections of the scan lines and data lines; substantially bilaterally, symmetric pixel electrodes in the pixel areas; and a liquid crystal layer interposed between the first and second substrates.
Abstract:
The present invention provides a transflective liquid crystal display device having at least one switching element having at least a drain electrode, a first passivation layer formed over the switching element with the first passivation layer defining a drain contact hole exposing a first portion the drain electrode, a transparent pixel electrode contacting the drain electrode through the drain contact hole and defining a contact opening that exposes a second portion of the drain electrode, the contact opening being defined in a portion of the transparent pixel electrode in the drain contact hole, and a reflective pixel electrode contacting the transparent pixel electrode in the drain contact hole and contacting the drain electrode through the contact opening.
Abstract:
A liquid crystal dispensing apparatus includes a container to contain liquid crystal, a discharge pump, and a nozzle to dispense liquid crystal from the discharge pump onto a substrate. The discharge pump has a separably formed case, a cylinder received in the case, a piston inserted into the cylinder and having a groove at a lower portion such that the piston draws in and discharges liquid crystal by rotating and moving up-down, and a suction opening and a discharge opening through which liquid crystal is to be respectively drawn in and discharged as the piston is moved.
Abstract:
An array substrate for a liquid crystal display device includes a gate electrode, a gate line and a gate pad electrode disposed on a substrate, each of the gate electrode, the gate line and the gate pad electrode having a first metal barrier layer, a first copper alloy layer, and a first out-diffusion film, and the first out-diffusion film completely covering, surrounding and contacting entire surfaces of the first copper alloy layer. The array substrate includes a gate insulation layer disposed on the substrate and covering the gate electrode, the gate line and the gate pad electrode. An active layer and an ohmic contact layer are sequentially formed on the gate insulation layer and over the gate electrode. A data line is formed on the gate insulation layer and perpendicularly crosses the gate line. A source electrode and a drain electrode contact the ohmic contact layer.
Abstract:
A liquid crystal display device includes a plurality of pixel regions arranged on a first substrate, a plurality of first electrodes and a plurality of second electrodes individually provided at the pixel regions to form a horizontal electric field, a plurality of gate lines arranged on the first substrate along a horizontal direction to supply scan signals to the pixel regions, a plurality of data lines arranged on the first substrate along a longitudinal direction to supply image information to the pixel regions, a plurality of switching devices each provided at each of the pixel regions and having a first terminal connected to one of the gate lines, a second terminal connected to one of the data lines, and a third terminal connected to a first electrode of the pixel region, a plurality of first common voltage lines supplying a first common voltage to the second electrodes provided at the pixel regions of every odd-numbered first common voltage line, and a plurality of second common voltage lines supplying a second common voltage to second electrodes provided at the pixel regions of every even-numbered second common voltage line, wherein the first terminal of each of the switching devices provided at the pixel regions of a line unit is alternately connected to a Nth gate line and a Nnull1th gate line (where N is an integer).
Abstract:
The present invention is an array substrate for use in a liquid crystal display device, which includes a gate electrode, a gate line and a gate pad on a substrate, wherein the gate electrode, the gate line and the gate pad have a double-layered structure consisting of a first metal layer and a first barrier metal layer in series from the substrate, and wherein the first metal is one of aluminum and aluminum alloy; a gate insulation layer on the substrate covering the gate electrode, gate line and gate pad; an active layer and an ohmic contact layer sequentially formed on the gate insulation layer and over the gate electrode; a data line on the gate insulation layer perpendicularly crossing the gate line, source and drain electrodes contacting the ohmic contact layer, and a data pad on the gate insulation layer, wherein the data line, the source and drain electrode and the data pad have a double-layered structure consisting of a second barrier metal layer and a second metal layer of copper; a passivation layer formed on the gate insulation layer to cover the data line, source and drain electrodes, and data pad, wherein the passivation layer has a drain contact hole exposing a portion of the drain electrode, a gate pad contact hole exposing a portion of the gate pad, and a data pad contact hole exposing a portion of the data pad; and a pixel electrode, a gate pad terminal and a data pad terminal on the passivation layer, all of which are formed of a transparent conductive material on the passivation layer.
Abstract:
A method of fabricating a polysilicon LCD device includes forming an active layer on a substrate, forming a first insulating layer having a first thickness and a second insulating layer having a second thickness sequentially on the active layer, forming a photoresist on the second insulating layer, ashing the photoresist, etching first portions of the first thickness of the first insulating layer corresponding to the source and drain electrode regions and the reduced second thickness of the second insulating layer within the first regions to expose source and drain regions of the active layer corresponding to the source and drain electrode regions, and etching a second portion of the second thickness of the second insulating layer to expose a portion of the first insulating layer corresponding to a gate electrode region, forming a gate electrode, a source electrode, and a drain electrode simultaneously on the second insulating layer, forming a passivation layer on the gate electrode, the source electrode, and the drain electrode, and forming a pixel electrode on the passivation layer.
Abstract:
A liquid crystal dispensing system includes a liquid crystal material container to contain liquid crystal, the liquid crystal material container provided with a first code corresponding to liquid crystal information; a reading unit to read the recognition code; a discharge pump to draw in and discharge liquid crystal from the liquid crystal material container; and a nozzle to dispense liquid crystal from the discharge pump onto a substrate.
Abstract:
An in-plane switching mode liquid crystal display device includes a plurality of gate and data lines on a substrate that cross each other to define a pixel region, a thin film transistor at a crossing of the plurality of gate and data lines, an organic insulating layer over the substrate including the thin film transistor, and having a step difference in the pixel region, common electrodes on the organic insulating layer above the data lines, and pixel electrodes positioned between the common electrodes.
Abstract:
A liquid crystal display module device includes a lamp housing, a plurality of lamps in the lamp housing, and a scattering material formed on a surface portion of the lamps.