Abstract:
An object of the invention is to provide a wireless communication apparatus which can correct error flexibly without wasting consumed resources while maintaining the improvement of reliability resulted from error correction. The wireless communication apparatus (relay station) 12 includes a receiving antenna 41 for receiving signals transmitted from the transmission station, a receiving RF section 42 for high-frequency amplifying the received signal, an error correction decoding section 43 for subjecting the received signal to the error correction decoding processing and outputting soft decision values and decoded bits, an error detection section 44 for subjecting the signal after the error correction decoding processing to the hard decision processing to detect error of the signal subjected to the hard decision processing, a switching section 45 for switching the soft decision values and the decoded bits, a re-coding section 46 for re-coding extracted ones of the soft decision values, a transmission RF section 47 for modulating the re-coded soft decision values and a transmission antenna 48 for transmitting the signal to the receiving station.
Abstract:
A directivity control section 103 performs weight control over a received signal using channel estimation and optimum weights, performs processing such as generation of the received signal and generates a plurality of weight-controlled transmission signals. A received signal demodulation section 104 extracts an SIR measurement result from the received signal. A scheduler section 105 decides which terminal should be assigned to a channel to be adaptively modulated from the SIR measurement result and at the same time decides the modulation multi-valued number and coding rate of the signal to the terminal. A transmission signal generation section 106 modulates a transmission signal such as a reference signal or packet data. A directivity switching instruction section 107 controls switching between directivities so as to maintain the same directivity after the reference signal is transmitted with a directivity until packet data is transmitted with a directivity. This makes it possible to receive packet data with high quality, improve efficiency of a radio frequency band and maximize communication path utilization efficiency.
Abstract:
A duplicating section duplicates a bit sequence to be input, and a 16QAM section modulates a bit sequence of a duplicating source to form a symbol, a 16QAM section modulates the duplicated bit sequence to form a symbol, an S/P section parallel converts the symbol sequence input in series, an S/P section parallel converts the symbol sequence input in series, and an IFFT section 15 provides IFFT processing to the input symbol sequence. Since each of multiple same bits duplicated by the duplicating section is included in a different symbol, each of the multiple same bits is allocated to each of multiple subcarriers each having a different frequency by IFFT processing. As a result, a multicarrier signal including the multiple same bits each having a different frequency is generated.
Abstract:
A radio communication apparatus includes a receiving section that receives a quality indication signal from a communicating station of a communicating party, a transmitting section that transmits transmission data corresponding to the quality indication signal to the communicating station, and a non-transmission information notifying section that notifies the communicating station of the communicating party of non-transmission information indicative of not transmitting the transmission data when the apparatus does not transmit the transmission data corresponding to the quality indication signal or the apparatus cannot transmit the transmission data to the communicating station. When the communicating terminal apparatus receives the non-transmission information indicative of not transmitting the transmission data, resources are saved in that the apparatus stops awaiting the data.
Abstract:
A wireless transmission device enabled to improve an error rate performance at a receiver, by acquiring at least one of frequency diversity effect and a time diversity effect while keeping the interference resistance which is acquired by diffusion. In this transmission device, a modulation unit (101) modulates data to create a modulation symbol having in-phase components and quadrature components. An IQ individual spreading unit (102) arranges the diffusion chips, which are obtained by spreaing the modulation symbol, of the in-phase components and the quadrature components, in areas extending in diffusion domains set individually for the in-phase components and the quadrature components. An IQ combining unit (103) combines the arranged spreading chips of the in-phase components and the quadrature components.
Abstract:
A wireless transmission apparatus that can accurately select an optimal modulation scheme on a per block basis in a multi-carrier communication system in which block division of subcarriers and adaptive modulation are performed. In this wireless transmission apparatus, a propagation path characteristics acquisition section acquires the average SNR and SNR variance for each block, which are estimated by a wireless reception apparatus, using received signals inputted from a reception RF section and outputs these to an assignment section. The assignment section selects a modulation scheme for each block based on the average SNR and SNR variance of each block inputted from the propagation path characteristics acquisition section and modulation sections modulate multi-carrier signals included in each block, with the modulation scheme for each block selected by the assignment section.
Abstract:
A wireless communication base station apparatus that can raise the usage efficiency of the frequency resources of the whole system in a multicarrier transmission. In this apparatus, a separating part (103) separates symbols received from a modulating part (102) into symbols to be assigned to a first subcarriers group and into symbols to be assigned to a second subcarriers group. A setting part (106-1) sets the transmission power of the symbols, which are to be assigned to the first subcarriers group, to a power value as calculated by a power calculating part (105), while a setting part (106-2) sets the transmission power of the symbols, which are to be assigned to the second subcarriers group, to a power value as calculated by the power calculating part (105). Thus, the transmission power control is differently performed between the symbols to be assigned to the first subcarriers group and the symbols to be assigned to the second subcarriers group.
Abstract:
It is possible to provide a radio communication terminal device, a radio communication base station device, and a CQI feedback method which can improve the CQI reproducibility while reducing the feedback overhead. A terminal channel judgment unit judges whether a local terminal is a TU terminal or a LOS terminal. A feedback CQI decision unit selects a Best-M report if the local terminal is the TU terminal, and selects a DCT report if the local terminal is the LOS terminal. The feedback CQI decision unit feeds back the CQI by using the selected report method.
Abstract:
A transmitting apparatus and a transmitting method wherein the systematic bit reception quality can be improved and the throughput performance can be improved. An IR parameter control part (101) controls, based on the number of retransmissions, the ratio of systematic bits to parity bits in mapping them to packets, and controls to map a parity bit to an initially transmitted packet, while mapping a systematic bit to a retransmitted packet. An encoding part (102) generates the systematic bits and parity bits and maps them to the packets in accordance with the IR parameters. A transmission power calculating part (105) calculates, based on reception quality information of the initially transmitted packet fed back from a receiving end, the transmission power of the transmitted packet to which the systematic bit is mapped. A transmission power control part (106) controls the transmission power of the retransmitted packet such that it is equal to the transmission power as calculated by the transmission power calculating part (105).
Abstract:
A link adaptation method and others wherein feedback information amount can be reduced. According to this method, a receiving apparatus (100) calculates, based on a channel matrix, a capacity (C) and a stream ratio (r) that is a ratio of the reception qualities of streams, and then transmits, as feedback information, the calculated capacity (C) and stream ratio (r) to a transmitting apparatus. In the transmitting apparatus (200), the number of transmittable streams, the modulation scheme and the fed-back capacity (C) are used to calculate the encoding ratio (R) and sequence length (S) of spatial multiplexed symbols. Then, the modulation scheme (M1-Mn) of each stream is decided based on the fed-back stream ratio (r) and the sequence length (S) of spatial multiplexed symbols.