Abstract:
According to one embodiment of the present specification, a user terminal is provided. The user terminal can comprise: a tunable antenna capable of adjusting a band; a diplexer connected to the tunable antenna to synthesize and separate sub-carriers; one or more antenna switches connected to the diplexer to synthesize and separate low-band sub-carriers and middle-band and high-band sub-carriers; and a sub-carrier processing unit connected to the one or more antenna switches to synthesize and separate a plurality of low-band sub-carriers, a plurality of middle-band sub-carriers and a plurality of high-band sub-carriers. A low-noise amplifier can be connected to the sub-carrier processing unit in order to prevent an increase in a reception sensitivity loss and a noise index occurring on a reception path of the diplexer, the one or more antenna switches and the sub-carrier processing unit.
Abstract:
One embodiment of the present specification provides a method for resource allocation by a serving cell base station, for supporting interference removal. The resource allocation method may comprise the steps of: determining whether or not UE has an interference removal function; and if the UE has the interference removal function, allocating resource blocks (RB) to the UE through a negotiation with an interfering cell with respect to the allocation of the resource blocks (RB). Herein the resource blocks (RB) of the interfering cell, which are co-located with the resource blocks (RB) according to the negotiation, may be allocated to another UE by the interfering cell without being divided.
Abstract:
One disclosure of the present specification provides a method for performing measurement. The method may comprise the steps of: receiving measurement setting information and wireless resource setting information from a serving cell; and receiving setting information for a measurement interval if a frequency band of the serving cell and a frequency band of a neighboring cell belong to different inter-bands, wherein setting information for the measurement interval may indicate a setting in which the number of downlink (DL) subframes is 1 for 5 ms if the serving cell operates with a TDD UL-DL setting of 0 or 6. The method may comprise a step of performing measurement for reference signals from the serving cell and the neighboring cell during the measurement interval.
Abstract:
The present disclosure provides a method for using a terminal to detect a small-scale cell at the edge of coverage of the small-scale cell in a wireless communication system in which a macrocell and the small-scale cell coexist. The present invention may include: a step of measuring a macrocell; a step of comparing a value related to the reference signal received quality (RSRQ) acquired according to the macrocell measurement with at least one critical value; a step of determining whether or not to carry out at least one interference removal function for receiving a signal from a small-scale cell in accordance with the determined results; and a step of detecting the signal from the small-scale cell when the interference removal function is actuated.
Abstract:
Disclosed in the present invention are a method for estimating an almost blank subframe (ABS) zone in a wireless access system in which a macro cell and a pico cell coexist, and an apparatus for same. More specifically, the present invention comprises the steps of measuring reference signal received power (RSRP) by using a cell-specific reference signal which is inserted into a subframe of the macro cell, and determining whether the format of the subframe is a multicast broadcast single frequency network (MBSFN) ABS by comparing an RSRP measurement value from a zeroth orthogonal frequency division multiplexing (OFDM) symbol of the subframe, and an RSRP measurement value from a symbol that is not the zeroth OFDM symbol.
Abstract:
The present invention discloses a method and device for controlling uplink transmit power of a terminal in a wireless access system that supports carrier aggregation/multiple cells. In particular, the method may include receiving a first TA value and a second TA value for a first timing advance group (TAG) including one or more component carriers and a second TAG including one or more component carriers, adjusting uplink transmission timing of the first TAG and the second TAG by using the first TA value and the second TA value, resetting a transient period between a first group of component carriers and a second group of component carriers exceeds a power control requirement, and controlling uplink transmit power according to the reset transient period.
Abstract:
There is provided a method for determining uplink transmission power. The method may performed by a user equipment (UE) and comprise: receiving, by the UE, a value of additional maximum power reduction (A-MPR) from a base station (BS), if the UE is configured to use for uplink transmission a frequency range of 1980 MHz through 2010 MHz or 1920 MHz through 2010 MHz and if another UE which is located in an adjacent BS and is to be protected uses for an uplink transmission a frequency range of 2010 MHz through 2025 MHz; and determining an uplink transmission power by applying the value of A-MPR.
Abstract:
A method of providing information for cell measurements. A first cell configures a subframe for performing a first measurement with respect to a first cell. A first position performing the first measurement is different from a second position performing a second measurement with respect to a second cell. The method includes transmitting, from the first cell to a user equipment (UE), first pattern information indicating the first position and second pattern information indicating the second position. A first subframe corresponding to the first pattern information is included in non-Almost Blank Subframe (ABS) subframes of the first cell, and a second subframe corresponding to the second pattern information is included in ABS subframes of the first cell. The ABS subframes of the first cell are configured as a first subframe at each of 8 subframes of the first cell.
Abstract:
A method performed by a base station. The method according to an embodiment includes transmitting configuration information on an uplink channel allocated to a user equipment; and receiving signals based on the configuration information. The signals are transmitted by using a maximum power reduction (MPR) on maximum output power for transmission with non-contiguous resource allocation in a single component carrier. The MPR is determined according to: MPR=CEIL{MA, 0.5}, the CEIL being a function of rounding up by 0.5. The MA is determined according to: MA=(8.0−10.12*A) when 0
Abstract:
According to one embodiment of the present specification, provided is a method for measuring a position in a wireless communication system. The method for measuring a position comprises the steps of: receiving observed time difference of arrival (OTDOA) assistance data from a positioning server; increasing an FFT sampling size when the value of a bandwidth of a positioning reference signal (PRS) included in the OTDOA assistance data is less than a first value; processing a plurality of received PRSs through the increased FFT sampling size; and calculating a reference signal time difference (RSTD) between the plurality of received PRSs