Abstract:
A user device can be configured for network access, such as for guest network access. In one example, a first device receives an indication of a transaction that uses the first device. The first device communicates a request for network access to an access point of the network in response to receiving the indication of the transaction. The first device then receives a first key from the access point. The first device provides the first key to the user device. The user device is to use the first key to obtain the network access to the network.
Abstract:
Techniques are described for securely provisioning a client device. A client device may output first client information over a secure interface to a trusted device to be transmitted to an authentication server. Second client information related to the first client information may be transmitted to the authentication server. The authentication server may link the second client information and the first client information. The client device may receive an encrypted authentication credential from the authentication server. The authentication credential may be encrypted based at least in part on the first client information or the second client information. The client device may decrypt the encrypted authentication credential using the first client information, the second client information, or a shared secret key.
Abstract:
Systems and methodologies are described that facilitate multiplexing communications from multiple downstream access points to one or more mobility management entities (MME). In particular, a concentrator component is provided that can establish a single transport layer connection with an MME along with multiple application layer connections over the single transport layer connection for each of multiple downstream access points and/or related mobile devices. The downstream access points and/or mobile devices can provide identifiers, such as tracking identifiers, to the concentrator component, which can utilize the identifiers to track communications with the MME. In this regard, the MME can send paging messages, and the concentrator component can determine downstream access points related to the paging messages based on a stored association with a tracking identifier in the paging message.
Abstract:
Disclosed are systems and methods for regulating system reselections by idle-mode mobile devices. In one aspect, a femtocell may be configured to reduce frequency of its reselection beacon, which reduces probability that a fast moving mobile device will detect the reselection beacon and reselect to that femtocell. This aspect may also delay femtocell reselection for slow moving mobile devices. In another aspect, a macrocell may slow down system reselection by adjusting cell reselection parameters used by mobile devices to determine the time needed to evaluate cell reselection criteria. Yet in another aspect, a macrocell may instruct a collocated femtocell to decrease its effective coverage area to avoid premature reselection by fast moving mobile devices. Yet in another aspect, a femtocell may use power boosting techniques to increase its reselection radius.
Abstract:
A mobile device, such as a smartphone or a tablet computer, can execute functionality for configuring a network device in a communication network and for subsequently controlling the operation of the network device with little manual input. The mobile device can detect, from the network device, sensor information that is indicative of configuration information associated with the network device. The mobile device can decode the received sensor information to determine the configuration information and can accordingly enroll the network device in the communication network. In response to determining to control the enrolled network device, the mobile device can capture an image of the network device and can use the captured image to unambiguously identify the network device. The mobile device can establish a communication link with the network device and can transmit one or more commands to vary operating parameters of the network device.
Abstract:
Information is communicated between access points to cause a recipient access point to invoke an action. In some aspects, a mapping is defined between: 1) sets of physical layer identifiers and/or associated time offsets; and 2) different types of information. The mapping information is provided to access points in a wireless communication system such that an access point can use this scheme to communicate specified types of information to another access point. Based on the mapping, an access point that receives a set of physical layer identifiers from another access point is able to determine the type of information being communicated. The recipient access point may then invoke a specific action based on the type of information that was communicated.
Abstract:
A hybrid device can be configured to execute operations to select singleton coordinating functionality in a hybrid communication network. In one embodiment, a single master device (e.g., a hybrid device configured as both a registrar and a central access point (CAP)) can be selected. The hybrid device can transmit search messages to detect an existing master device and/or to identify other hybrid devices contending to become the master device. The hybrid device with the preferred device identifier is selected as the master device. In another embodiment, operations for selecting the coordinating functionality are split into two independent stages—a CAP selection stage and a registrar selection stage. In the CAP selection stage, the hybrid device with a preferred device weight (or a preferred device weight and a preferred device identifier) is configured as the CAP. In the registrar selection stage, similar operations can be executed to select the registrar.
Abstract:
A hybrid device can implement functionality to automatically configure itself to form a home network with other network devices. If it is determined that the hybrid device is the central access point of a hybrid network, operating parameters are determined for the central access point. The central access point can then operate in conjunction with other non-CAP hybrid devices of the hybrid device to determine how to configure the non-CAP hybrid device. The configuration of the non-CAP hybrid device can be determined based, at least in part, on a communication link performance measurement between the CAP and the non-CAP hybrid device. Furthermore, the hybrid network can also be monitored to ensure that the hybrid devices do not repeatedly or randomly switch between different configurations.
Abstract:
A hybrid device may select a next hop for a packet stream based upon a path selection. The path selection includes calculating end-to-end path capacity for candidate paths to a destination device. End-to-end path capacity is calculated based upon contention groups of particular links in at least one of the plurality of paths. Selected paths are recorded in a stream forwarding table for use with subsequent packets of a packet stream. In some embodiments, each hybrid device independently performs path selection logic or path update logic for a packet stream.
Abstract:
Ambiguity (e.g., confusion) associated with access point identifiers may be resolved by querying candidate target access points and/or by using historical records indicative of one or more access points that the access point has previously accessed. For example, messages may be sent to access points that are assigned the same identifier to cause the access points to monitor for a signal from an access terminal that received the identifier from a target access point. The target access point may then be identified based on any responses that indicate that a signal was received from the access terminal. In some aspects the access points subject to being queried may be selected using a tiered priority. In addition, it may be determined based on prior handoffs of a given access terminal that when that access terminal reports a given identifier, the access terminal usually ends up being handed-off to a particular access point. Accordingly, a mapping may be maintained for that access terminal that maps the identifier to that access point so that the mapping may be used to resolve any future confusion associated with the use of that identifier by that access terminal.